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ABSTRACT 

J. C. Parker and M, Th. van Genuchten. 1984. Determining transport 

parameters from laboratory and field tracer experiments. Bulletin 

84-3, Virginia Agricultural E1eperiment Station, Blacksburg. 

This bulletin describes a nonlinear least-squares inversion method 

that can be used to identify several parameters in a number of 

theoretical one-d.imensional solute transport models. One of the 

models discussed is the usual convection-dispers.ion transport 

equat.ion that .includes terms accounting for linear equilibrium 

adsorption, 

addition, a 

applied to 

zero-order production and/or 

two-site/two-region model is 

first-order decay. 

described that can 

In 

be 

various non-equilibrium transport problems. Also 

included is a stochastic model that considers the effects of areal 

variations in hydraulic fluxes on field-scale solute transport. 

This last model also has provisions for zero- or first-order 

production and/or decay. The least-squares inversion method can be 

used to analyze both spatial and temporal distributions of flux or 

resident concentrations. A detailed description of the computer 

program, called CXTFIT, is given in one of the appendices of this 

bulletin. Several example problems illustrating practical applica­

tions of the program are discussed in detail. 
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1, INTRODUCTION 

Concern about the behavior of various chemicals in the 

subsurface environment has resulted in the development of a number 

of theoretical models describing the basic processes of solute 

transport in soils. With the introduction of more and more 

sophisticated models, an important problem remaining is that of 

quantifying various model parameters, e.g., dispersion coefficients, 

retardation factors, and degradation constants. One popular method 

for determining these parameters is to fit them to observed 

laboratory or field displacement data. In particular, least-squares 

inversion methods have proved to be accurate and reliable tools for 

this identification process. Early examples using least-squares 

methods are given by Elprince and Day (1977), Laudelout and Dufey 

(1977), Agneessens et al, (1978) and Le Renard (1979), 

In 

computer 

methods 

two previous reports we documented relatively simple 

programs that applied nonlinear least-squares inversion 

to deterministic equilibrium (van Genuchten, 1980) and 

various non-equilibrium adsorption models (van Genuchten, 1981). 

Those programs are applicable only to breakthrough curves in time, 

that is, to solute distributions determined at a fixed location 

downstream of an injection point, In addition, the previous 

programs ignored any production and decay processes and did not 

distinguish between analytical solutions applicable to different 

concentration detection modes, In this report we extend and modify 

the earlier programs to the analysis of resident- and flux-type 

concentration distributions that have been determined versus 

distance or versus time at more than one location in the soil 

profile, Zero- and first-order production or decay terms are 

included in the equilibrium adsorption model, 
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Spatial heterogeneity of medium properties often limits the 

applicability of deterministic approaches to mass transport for 

field-scale problems. In this report we also present a stochastic 

model that considers the effects of areal variations in hydraulic 

fluxes on transport for a solute subject to linear equilibrium 

adsorption and zero- and first-order production or decay. Calibra­

tion of this model using field observations of spatial and/or 

temporal resident or flux concentrations can be achieved by 

application of the least-squares inversion method. 

After presenting the different analytical models, a descrip­

tion of the computer program is given, followed by a discussion of 

several examples that illustrate typical applications of the 

inversion method. Program listings, input instructions, and example 

input and output files are presented in various appendices. 

Machine-readable copies of the FORTRAN IV program are available from 

the authors upon request. 

2. GENERAL FORMULATION OF THE TRANSPORT EQUATION 

Transport of a single reactive solute species during steady 

fluid flow in a one-dimensional homogeneous system may be described 

by 

ac 
.E~+--r e at at [l) 

where cr is the volume-averaged resident concentration of the solute 

in the liquid phase (ML-3), sis the adsorbed concentration per unit 

mass of the solid phase (MM-1), xis distance (L), tis time (T), D 

is a dispersion coefficient reflecting the combined effects of 

diffusion and hydrodynamic dispersion on transport (L2T-1), vis the 

average pore-water velocity (LT-1), pis the porous medium bulk 

density (ML-3) and e is the volumetric water content (L3L-3 ). The 

coefficients µw and µs are rate constants for first-order decay in 

the liquid and solid phases of the soil, respectively (T-1). The 

coefficients yw and y s represent similar rate constants for zero-
-3 -1 -1 order production in the two soil phases (ML T and T , respec-

tively). 
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solution of 

concentration 

[ 1) 

(s) 

requires 

to the 
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an expression relating the 

solution concentration (er). 

Various expressions for shave been presented in the literature for 

which analytical solutions of [ l J can be obtained. This study 

considers deterministic solutions of [l) applicable to various 

linear equilibrium 

adsorption models. 

(section 3) and 

Also presented 

non-equilibrium (section 4) 

is a stochastic model that 

explicitly considers spatial heterogeneity in v and D for the case 

of linear equilibrium adsorption (section 5). 

In addition to the adsorption term, Eq. [l] must be augmented 

with auxiliary equations describing the initial and boundary condi­

tions of the system under study. In all cases, the initial 

condition is assumed to be of the simple form 

[2] 

where Ci is a constant. 

There has been much discussion in the literature about the 

type of boundary conditions that are most appropriate for finite and 

semi-infinite systems. In earlier studies (van Genuchten and 

Parker, 1984; Parker and van Genuchten, 1984), we showed that a 

third- or flux-type boundary condition should be used at the inlet 

position (xa0), i.e., 

(c - - _!_) • C (t) D ac I 
r v ax x=0 in 

[3) 

where Cin(t) is the concentration of the injection fluid as a 

function of time. Equation [3] implies a discontinuity in 

concentration across the injection boundary, which increases with 

the value of the apparent dispersivity D/v. This•discontinuity is a 

direct consequence of the assumption that at the injection plane a 

boundary layer of infinitesimal thickness develops in which the 

system parameters change discontinuously from those of a perfectly 

mixed inlet reservoir (x < 0) to those of the bulk porous medium (x 

> 0). Microscopically, this change always takes place over a finite 

transition region. 
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The lower boundary condition for an effectively semi-infinite 

system can be written as 

ac r ax < "', t) finite [4] 

For a finite system of length L, a frequently used boundary 

condition is 

ac 
r 

ax(L,t) 0 [SJ 

This condition disregards the development of a boundary transition 

layer similar to that noted for the injection boundary. In effect, 

the concentration is forced to be continuous across the exit 

boundary. Accommodating the presence of a boundary layer at x = L 

leads to a discontinuous concentration distribution across the lower 

boundary, and thus to a gradient in er interior to the transition 

zone that is not constrained to be zero. So long as backmixing at 

the exit boundary is negligible (which generally is the case), Eq. 

[ 4] for the semi-infinite case can be used with impunity and the 

resulting solution for cr(x,t) applied to the finite region 

0 .; x .; L as well (Parker and van Genuchten, 1984; Parker, 1984). 

Accordingly, all solutions in this report are based on [4]. 

In many instances, the experimental conditions are such that 

measured concentrations are flux-averaged rather than volume­

averaged. This is the case when effluent concentrations from column 

tracer experiments, pan lysimeters or subphreatic wells are 

analyzed. To meaningfully interpret such measurements, it is 

imperative that the concentrations not be assumed to represent 

resident concentrations (er) at the outflow boundary. Instead, they 

must be treated as representing flux-averaged concentrations (cf), 

which are defined by (Brigham, 1974; Kreft and Zuber, 1978): 

[6] 
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where J and q are the solute and liquid flux densities, respec­

tively: 

J 

and 

q 

ac 
qc - SD __ r 

r ax 

8v 

With [7] and [8], Eq. [6] becomes 

[ 7 J 

[8] 

[ 9] 

Hence, the flux-averaged concentration, cf, represents the "mass of 

solute per unit volume of fluid passing through a given cross­

section during an elementary time interval" (Kreft and Zuber, 

1978). In this report, we will use analytical solutions of (l] for 

both the volume-averaged concentration, cr, and the flux-averaged 

concentration, cf. 

3. LINEAR EQUILIBRIUM ADSORPTION MODELS 

Consider the case where adsorption is described by a linear or 

linearized isotherm of the form 

s = kcr (10] 

where k is an empirical distribution constant [L3M- 1]. Substituting 

(10] in (l] yields 

ac 
R--r at 

ac 
v __ r - µer + y ax 

where the dimensionless retardation factor R is defined as 

R 1 + pk/ 8 

(11] 

[12] 
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and the new rate coefficients µand y (T-l and ML-3T-l, respective­

ly) are given by 

(13) 

(14) 

We will consider solutions of (11) for pulse-type input boun­

dary conditions of the form 

(c - - ~) D ac I 
r V ax x=O 

(15) 

t > t 
0 

where C
0 

is a constant. Because solutions for zero values of µ do 

not follow directly from the more general solutions for non~zero µ, 

the two cases of zero and non-zero first-order degradation will be 

considered separately. On the other hand, all solutions for y= 0 

can be obtained immediately from those for non-zero y by simply 

forcing this coefficient to be zero in the analytical solutions. 

3,1. Solution for cr with µ -t O. 

The analytical solution for this problem is (see case C6 of 

van Genuchten and Alves, 1982) 

= 

where 

A(x,t) 

j
:I + (C -.1) A(x t) + (C -.1) B(x,t) 0 < t < t

0 µ i µ ' 0 µ 

.1 + (Ci- .1) A(x,t) + (C - .1) B(x,t) - C B(x,t-t) t > t
0 µ µ 0 µ 0 0 

µt 
exp(- a> 

2 l/2 2 

{ 
1 Rx - vt v t (Rx - vt)] 

1 - 2 erfc( 1)1 - (11DR) exp[- 4DRt 
· 2(DRt) t 



and 

+ _21 (1 + vx + v2t) exp(vDx) erfc(~-+ 171} 
D DR 2(DRt) z 

B(x,t) v [(v-u)x] f [Rx - u~1 = v+u exp ~ er C -~Z 
2(DRt) 

+ v [(v+u)x] f [Rx + ut~ -::- exp ··~ er c --~ 
vu 2(DRt) 

2 V VX µt Rx + Vt + - exp(- - -) erfc[-------r-il 2 µD D R 2(DRt)1Z 

2 l/2 
U (V + 4 µD) • 

3.2. Solution for cr with µ = 0. 

7 

Because of a division by zero, the analytical solution above 

cannot be used for the special case when first-order decay is negli­

gible. For µ = O, the solution reduces to (case B6 of van Genuchten 

and Alves, 1982) 

c(x,t) 

where 

{c1 + (C
0

- c1) A(x,t) + B(x,t) O < t, t
0 

lei+ (C
0

- Ci) A(x,t) + B(x,t) - C
0
A(x,t-t

0
) t > t

0 

2 l/2 2 
1 Rx - Vt Vt (Rx - Vt)] 

A(x,t) = 2 erfc[ 1/t + (11DR) exp[- 4DRt 
2(DRt) 

2 1 VX V t VX Rx + Vt 
- -2 (1 + - + -) exp(-0) erfc[ tjl 

D DR 2(DRt) z 
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B(x, t) = .1. {t + (Rx - ! + ~) erfc[!?t - vt7l 
R 2v 2 2v2 2(DRt) 'l 

½ 2 t 2DR (Rx - vt) ] 
- (411DR) (Rx+ vt + ") exp[- 4DRt 

2 
DR (Rx + vt) ] vx Rx + vt } 

2v 2 + 40R exp(D) erfc[ tp . 
2(DRt) z 

3.3. Solution for cf with µ t O. 

The solutions for the flux-averaged concentrations (cf) follow 

immediately from those of the volume-averaged concentrations (er) 

above by making use of definition [9]. Alternatively, the desired 

expressions for cf can be found by first using [9] to redefine 

transport equation [11] and its initial and boundary conditions in 

terms of the flux-averaged concentration, and subsequently solving 

the transformed set of equations. To accomplish the latter, let us 

first differentiate [9] with respect to x and t, to give respec-

tively 

Combining [11] and [16] gives 

Next 

ac 
R--r 

at 

we use 

acf 
Rat 

[17] to eliminate 

2 
acf _ RD a er_ 

v--
V ;)t;)x ax 

[16] 

[17] 

[18] 

ac/at from [18]: 

- µer+ y 
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ac acf 
D a (R-r) - ~ ax at - V ax:- - IJCr + y (19] 

which, again with (18] and some rearranging, yields 

acf 
2 

a cf acf D acr 
R-- D-- - v-- - µ(er - v a;;:-) + y. at ax2 ax [20] 

Finally, sustitution of (9] into (20] leads to 

(21] 

which is identical to (11], except that the volume-averaged concen­

tration, cf, is replaced by the flux-averaged concentration, cf' 

The initial and boundary conditions are transformed in the 

same manner to give 

[22] 

[23] 

(24] 

The transformation from [4] to [23] formally requires that the 

second spatial derivative of er also be finite when x + ... Using 

the different solutions for er, one may verify that this criterion 

is indeed always met. Note that the transport model for cf is 

exactly the same as the model for er, except that the third-type 

input boundary condition for er has been transformed into a first­

type condition for cf. 
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The complete solution of Eqs. (21] through (24] is (case CS of 

van Genuchten and Alves, 1982) 

(C.- .1) A(x,t) + (C - .1) B(x,t) 
1 µ 0 µ 

(C - .1) A(x,t) + (C - .1) B(x,t) - C B(x,t-t ) 
i µ 0 µ 0 0 

where 

A(x,t) µt { 1 Rx - Vt 1 VX Rx + Vt } exp(- R) 1 - 2 erfc[ 1/} - 2 exp(0 ) erfc[ 1jl 
2(DRt) 2(DRt) z 

1 (v-u)x Rx - ut 1 (v+u)x Rx + ut B(x, t) = 2 exp[ 2 ] erfc[ tJt + 2 exp[ 20 ] erfc[-~l 
D 2(DRt) 2(DRt) l 

and 

3 .4 Solution for cf with µ = O. 

The solution is (case BS of van Genuchten and Alves, 1982) 

c(x,t) 

ri + (C0 - c1) A(x, t) + B(x, t) 

= Ci+ (C
0

- Ci) A(x,t) + B(x,t) - C
0
A(x,t-t

0
) 

where 

1 Rx - vt 1 vx) Rx + vt A(x, t) = 2 erfc( 1)1 + 2 exp(0 erfc[ 1jl 
2(DRt) t 2(DRt) l 



11 

B(x,t) =- :t. {t + (~-vt) erfc[!!-~-=..:;;1 
R 2v 2(DRt)'l 

_ (Rx+vt) vx Rx+ vt } 
2v exp(0 ) erfc[----y} • 

2(0Rt) 

4, TWO-SITE/TWO-REGION NON-EQUILlBRIUM MODELS 

We now consider the case where the adsorption term in ( 1) 

consists of two components, one governed by equilibrium adsorption 

and one by first-order kinetic non-equilibrium adsorption. fhls 

type of "two-site" adsorption model has been discussed by 

Selim et al. (1976), Cameron and Klute (1977), Rao et al, (1979), ~e 

Camargo et al. (19i9), Hoffman and Rolston (1980) and by Fluhler and 

Jury (1983). Basic to the two-site adsorption model is the idea 

that the solid phase of the soil is made up of different 

constituents (soil minerals, organic matter, iron and aluminum 

oxides), and that a chemical is likely to react with these different 

constituents at different rates and with different intensities. The 

model assumes that sorption sites can be divided into two fractions; 

adsorption on one fraction ("type-1" sites) is assumed to be 

instantaneous, while adsorption on the other fraction ("type-2" 

sites) is thought to be time-dependent, As was the case in the 

earlier report (van Genuchten, 1981), we will ignore any production 

or decay processes for the non-equilibrium models, 

At equilibrium, adsorption on both the equilibrium and kinetic 

sites is described by linear equations: 

[25 I 
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[26] 

where the subscripts 1 and 2 refer to type-1 (equilibrium) and type-

2 (kinetic) sites, respectively, and where Fis the fraction of all 

sites occupied by type-1 sorption sites. 

equilibrium is simply 

Total adsorption at 

[27] 

Because type-1 sites are always at equilibrium, it follows from [25] 

that 

ac 
Fk--r at [28] 

The adsorption rate for the type-2 kinetic non-equilibrium sites is 

given by a linear and reversible rate equation of the form 

[29] 

where a is a first-order rate coefficient (T-1). Ignoring the 

production and decay terms in Eq. (1) and combining this equation 

with the adsorption expressions above leads to the following 

transport model: 

ac as 
(l +~) __! +J1_2 e at e at 

a2c ac 
D--r-v __ r 

ax2 ax 
[30] 

[31] 
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As in previous cases, Eqs. [30) and [31) will be solved for a 

uniform initial concentration (Eq. 2) and for a pulse-type injection 

(Eq. 15) into a semi-infinite medium. For s 2 an additional initial 

condition is required: 

[32) 

The following dimensionless variables are introduced: 

T vt/L [33) 

z x/L [34] 

P vL/D [35) 

R = 1 + pk/6 [36) 

a = 
6 + Fpk 
6 + pk 

[37) 

w = a(l-S)RL/v [38) 

C - Ci r 
cl C - Ci 

0 

[39) 

s 2 - (1-F)kCi 
C2 (1-F)k(C

0
- Ci) 

[ 40] 

where L is an arbitrary positive distance from the origin. 

Substituting these variables into [30) and [31) yields 

[41) 
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[42] 

As pointed out by van Genuchten (1981), a mathematical problem 

identical to that of the two-si.te kinetic model is obtained when 

apparent non-equilibrium conditions in the system are attributed to 

large heterogeneities in microscopic pore-water velocities. This 

approach assumes that the liquid phase can be partitioned into 

"mobile" (dynamic or macro-porosity) and "immobile" (stagnant or 

micro-porosity) regions. Convective and dispersive transport is 

restricted to the mobile water phase, while transfer of solutes into 

and out of the immobile (nonmoving) liquid phase is assumed to be 

diffusion-limited. 

model are 

The governing equations for this two-region 

ac ac 
m im 

( em + fpk) at+ [ aim+ (1-f)pk] ~ 
a2c 

0D __ m_ 
mm ax2 

* a (cm - c ) im 

where cm and cim are the resident concentrations 

ac 
m qax 

of the mobile 

immobile liquid phases, respectively; em and aim are the mobile 

immobile volumetric water contents such that a = a + aim' Dm is m 
dispersion coefficient for the mobile region, f represents 

[43] 

[44] 

and 

and 

the 

the 

fraction of the sorption sites that equilibrates with the mobile 

* liquid phase, and a is a first-order rate constant that governs the 

rate of solute exchange between the mobile and immobile regions. 

The dimensionless form of the two-site model is identically 

preserved when ( 43] and [ 44] are expressed in terms of T, z and R 

(Eqs. [33], [34] and [36]), and the following reduced variables: 

p [ 45] 
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e + fpk 
13 

m 
e + pk [46] 

w = * a L/q [47] 

C - C. m l. 
cl C - Ci 

[48] 
0 

[49] 

where vm q/em. Note that [45] is the same as [35] if we define D 

for the two-region model as D = Dm em/ e. Because the dimensionless 

transport equations and their initial and boundary conditions are 

identical, parameters obtained by fitting data to the two-site 

adsorption model may be interpreted also in terms of a two-region 

physical non-equilibrium model (and vice-versa) if deemed appro­

priate. 

4.1. Solution for Cr• 

Analytical solutions of Eqs. [ 41] and [ 42], or of mathemati­

cally similar equations, have been derived for a variety of initial 

and boundary conditions (Lapidus and Amundson, 1952; Coats and 

Smith, 1964; Villermaux and van Swaay, 1969; Bennet and Goodridge, 

1970; Lindstrom and Narasimhan, 1973; Lindstrom and Stone, 1974; van 

Genuchten, 1974; Lindstrom and Boersma, 1975; Lindstrom, 1976; 

Cameron and Klute, 1977; Popovic and Deckwer, 1976), As shown by De 

Smedt and Wierenga (1979), these solutions can all be expressed in 

the same general format. For the initial and boundary conditions of 

this study, the solution for the volume-averaged concentration (er) 

in terms of the reduced variables given in the previous section is 

(see also van Genuchten, 1981): 
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where 

and 

A(z, T) 

g(z,T) 

J(a,b) 

WT 
a = t!R 

1
c, + cc, - c1) A(,,T) 

Ci+ (C
0 

- Ci) A(z,T) - C
0

A(z,T-T
0

) 

T 
J g(z,T) J(a,b) dT 
0 

P 
1/2 2 

( ) P( t!Rz - T) ] 
~8RT exp[- 48RT 

p p 112 
- 2 t!R exp(Pz) erfc[( 4 BRT) (8Rz + T)] 

[50] 

[51] 

[52] 

[53] 

[54] 

[55] 

The function J(a,b) above is often referred to as Goldstein's J­

function ( Goldstein, 1953); 1
0 

in this function represents a zero­

order Bessel function. Some properties and computational approxima­

tions of the J-function are summarized elsewhere (van Genuchten, 

1981). We emphasize here that the analytical solution for cr above 

represents the volume-average concentration of the entire liquid 

phase if applied to the two-site model, while for the two-region 

model the solution represents the volume-averaged concentration of 

the "mobile" liquid phase only. 
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4.2. Solution for cf. 

The analytical solution for the flux-averaged concentration 

( cf) follows immediately if one applies transformation [ 9) to the 

analytical solution for cr given in the previous section. The 

solution is exactly the same as before, except that [52) is replaced 

by 

g(z, T) [56) 

One may verify that the solution for cf thus obtained is the analy­

tical solution of Eqs. [41] and [42] for a semi-infinite medium 

subject to a first-type input boundary condition of the same form as 

given by Eq. [24) of section 3.3. 

5. REGIONAL TRANSPORT MODELS 

Growing evidence in the literature indicates . that determin­

istic solutions of the convection-dispersion equation may not 

adequately describe solute transport in natural porous media at the 

field-scale (Gelhar et al., 1979; Bresler and Dagan, 1981; Pickens 

and Grisak, 1981; Amoozegar-Fard et al., 1982; Simmons, 1982; Tang 

et al., 1982). At least in part, this inadequacy is caused by 

medium heterogeneities which often increase significantly with the 

scale of observation. The two-region model discussed in the 

preceding section represents an attempt to accommodate pore 

structure variability at a scale intermediate between the usual 

laboratory measurements and the larger field scale. To evaluate the 

effects of field-scale heterogeneities, the stochastic nature of the 

transport process must be explicitly dealt with. The model 

formulated below is similar to the one-dimensional stochastic 

transport models of Bresler and Dagan (1981) and Amoozegar-Fard et 

al. (1982). Conceptually, we regard the transport region as being 

composed of numerous parallel porous columns (which we denote as the 

"'local scale""), each having specific properties and being subject to 
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specific local boundary conditions. We further assume that 

transport within each column can be described by the one-dimensional 

convection-dispersion equation (Eq. 11) with determi:i.istic 

coefficients. Lateral flow, transverse dispersion, and vertical 

inhomogeneities are thus regarded to be negligible. 

Variations in local pore water velocities are considered to be 

log-normally distributed. Because the flow region is assumed 

implicitly to be fixed, a unique realization of the stochastic 

variables will be obtained and the actual spatial pattern of the 

velocity distribution is of no concern. The probability density 

function for an idealized log-normal distribution of vis 

p(v) (57] 

where µln and o1n are the mean and standard deviation of ln(v). The 

density function is normalized so as to yield unity for the integral 

of p(v) from v = 0 to ""• The first moment, <v>, of this density 

funtion gives the expected value of v: 

J; v p(v) dv 
<v> = ------­

ro"" J, p(v) dv 

which yields 

Hence, <v> represents the mean field value of v. 

[58] 

[59] 

Dispersion coefficients measured at the scale of single 

solution sampling devices have also been found to vary log-normally 

(Biggar and Nielsen, 1976). These variations, however, are not 

independent of the observed pore water velocity variations and may, 

to a first approximation, be described by the relation 



D = £V 

where£ is the local-scale dispersivity (L). 
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(60] 

We assume £ to be 

deterministic and constant within the f~ow region. This assumption 

effectively means that p(D) is defined completely in terms of p(v) 

and £. Sensitivity analyses suggest that variations in D beyond 

those linked directly to v through (60] are insignificant compared 

to the effects of areal velocity variations on local convective 

transport (Amoozegar-Fard et al., 1982). 

We further assume that water contents, adsorption coefficients 

and the zero- and first-order reaction constants are all determinis­

tic variables. Thus the medium properties are completely defined by 

the deterministic coefficients R, µ, y and£ and the stochastic 

probability density function p(v), characterized by the coefficients 

µln and o1n. We now consider solutions for field-scale resident and 

flux concentrations pertinent to specified field-scale initial and 

boundary conditions. 

5.1. Solution fore • r 
The field-scale resident concentration er represents the mean 

concentration value occurring over any plane perpendicular to the 

velocity field and parallel to the injection boundary: 

f cr dA 
e 3 --'-( A-')--..-,--_ 

r j dA 
(A) 

(61] 

where cr is the local-scale concentration and A is the areal domain 

of interest. Since velocity is the only stochastic variable over 

the areal domain, (61) may be written as 

J
O 

m crp(v) dv 

J
O 
.. p(v) dv 

(62) 

where cr=er(x,t) and cr=cr(x,t,v). By definition of the normali­

zed density function, the denominator in (62) is unity. Equation 
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[62) indicates that er represents the expected value of the random 

variable er (denoted as <er)). 

To solve [62), we must evaluate the local value of er, which 

is assumed to be described by analytical solutions of section 3 .1 

and 3.2 for a uniform initial condition and a pulse-type injection 

at the local scale. The initial and input concentrations (Ci and 

C
0

) in these solutions are assumed to be deterministic. The field­

scale injection boundary condition can be formulated in one of two 

ways. To stipulate these conditions, let us first introduce the 

cumulative local inlet solute flux M (ML- 2): 

M(t) 
t 

J J (-r) dt 
0 0 

[63] 

where J
0 

is the local mass flux density at the inlet boundary. For 

a pulse-type injection, [63] yields 

__ {v6C0 t 
M(t) 

v6C t 
0 0 

[64] 

We also define M
0 

= M(t-+<») • v6C
0

t
0 

which represents the total 

amount of material to be added to the profile. The two field-scale 

boundary conditions for which we will obtain solutions are deter­

mined by the following situations: 

(1) Deterministic t
0

, 6, C
0

; Stochastic M
0

, v. 

(2) Deterministic M
0

, 6, C
0

; Stochastic t
0

, v. 

Thus either the pulse duration (t
0

) or the asymptotic value of the 

cumulative influx (M
0

) may be taken as constant. 

By fixing t
0

, it is implied that M and M
0 

vary locally in 

direct proportion to v. The mean value <M> of Mat the field scale 

is then 



--! <v>ecot 
(M)(t) 

<v>ec t 
0 0 
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[65) 

As before, let (M
0

) = (v)OC
0

t
0

, Equation [65) should be used when a 

tracer solution is applied uniformly over the flow region for a 

fixed time period. 

A second field-scale boundary condition can be formulated by 

stipulating a uniform local cumulative flux M
0

= M(t+m), thus indi­

cating that t
0 

varies inversely with v in accordance with [64). 

This condition is appropriate when chemicals are added uniformly 

over an area in solid form and subsequently leached continuously 

with a solute-free solution. In that case, C
0 

may be viewed as 

being governed by the chemical solubility. The temporally integra­

ted areal mean mass flux is now given by 

t 
<M><t> = I 

0 

V 

f O ec p(v) dv d T 
0 0 

which in the limit when t + m yields (M)(m) = (M
0

) M
0

, 

[66) 

The initial and boundary conditions for the regional transport 

models are completely defined by the constants Ci, C0 and t 0 or by 

When in addition e: and the reaction constants 

R, µ and y are known, the solutions for cr(x, t, v) of sections 3 .1 

and 3,2 can be applied. Further specification of 111n and a1n 

defines p(v), thus allowing er to be evaluated by numerical 

quadrature of [62], 

For purposes of field calibration involving a large number (n) 

of random observations for cr at fixed x and t over the areal extent 

of the flow region, we may take p(v) = 1/n in [62] for each 

observation cri' This discrete case gives 

1 n 
er=-- LCi [67] 

n i=l r 
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which is simply the arithmetic average of the observed local 

resident concentrations. When observations are not available at 

fixed x and t, it may be feasible to interpolate between given x and 

t graphically or by means of smoothing functions prior to averaging. 

5.2. Solution for ef. 

Let us define a field-scale flux concentration ef in the same 

fashion as introduced earlier (Eq, 6) at the "local" level: 

[68] 

where <J> and (q> respect! vely represent the time-dependent solute 

mass flux and volumetric fluid flux across a plane perpendicular to 

the velocity field. From the definition of cf at the local 

continuum level (Eq', 6), we may replace J by qcf. With the 

assumption that 8 is deterministic, [68] becomes then 

which in turn may be expanded to give 

J vp(v) dv 
0 

[69] 

[70] 

The denominator in [70] can be obtained analytically for the log­

normal distribution function as indicated by [58] and [59]. The 

numerator can be evaluated numerically for given p(v) and cf, with 

the latter obtained analytically from the solutions in sections 3.3 

and 3.4. Field-scale initial and boundary conditions for ef are 

analogous to those imposed on er. 

From Eq. [70], it follows that ef differs from the expected 

value (cf>, which for deterministic 8 is given by 
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[71] 

f p(v) dv 
0 

This behavior is in contrast to that for er= <er> and has important 

implications to model calibration via measurements of local cf-

values. For the general case of variable water content e, random 

sampling leads to the discrete form for ef: 

n 

I (qcf> · 
i=l 1 

n 
I q. 

i=l 1 

[72] 

Because local values for q are not easily obtained experimentally, 

evaluation of the field-scale flux-weighted average concentration 

(Eq. 72) is extremely difficult. In general it is therefore 

advisable to use resident concentration measurements for calibration 

of regional transport models. The main advantage of the solution 

for cf lies in the fact that it leads directly to an estimate for 

the field-scale solute flux <J)(x,t) for given (q). 

6. COMPUTER PROGRAM DESCRIPTION 

A FORTRAN IV computer program (CXTFIT) was written that permits 

one to fit any of the previously discussed analytical solutions for 

er, cf, er or ef to observed concentration distributions as a 

function of time and/or distance. The curve-fitting method uses the 

maximum neighborhood method of Marquardt (1963) to minimize the sums 

of squares of the residuals between observed and calculated concen-

trations. A detailed description of the method is given by Daniel 

and Wood (1973). Two previous versions of this same curve-fitting 

program were used by van Genuchten (1980, 1981) to analyze break­

through curves in time. Program CXTFIT can be applied also to 

spatial concentration distributions (e.g., as obtained from 
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sectioned soil columns or from field core data) as well as to 

simultaneous spatial and temporal distributions (e.g., as obtained 

from replicated cores sectioned at different times). The basic 

format of the earlier programs, including notation and set-up of the 

input data file, has been maintained as much as possible. Aside 

from the least-squares regression analysis, the program can be used 

also to predict spatial and temporal concentration profiles for 

given coefficient values using one of the analytical solutions 

listed in this report. The least-squares inversion part of the 

program will be bypassed in that case. A listing of CXTFIT is given 

in Appendix E. 

A list of the most important parameters of CXTFIT is presented 

in Appendix A. Appendix B gives instructions for setting up data 

input files, while Appendix C lists selected input files used for 

various examples to be discussed later. The computer output file 

for these examples is given in Appendix D. 

The computer model itself consists of a MAIN section, six 

subroutines (LIMIT, MATINV, MODEL, MOD12, MOD34 and ROMB) and four 

functions (CAVG, CCO, EXF and GOLD). Input and output instructions 

and most of the parameter optimization calculations are carried out 

in MAIN. Of the four functions, EXF evaluates the product of the 

exponential function (exp) and the complementary error function 

(erfc). The function CAVG calculates the arguments of the integrals 

in (62] and [70] for the regional transport moqel. The function CCO 

calculates the argument of the integral in [51] for the two 

site/two-region model, while GOLD evaluates Goldstein's J-function 

that appears in that same equation. 

Of the six subroutines, MATINV performs a matrix inversion 

needed for the least-squares analysis. Subroutine HODEL performs 

coefficient assignments and routes 

subroutine for evaluation of one 

execution to the appropriate 

of the analytical solutions. 

Subroutine HOD12 evaluates all analytical solutions for determinis­

tic models involving linear equilibrium adsorption while MOD34 
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similarly evaluates the analytical solutions for the two-site/two­

region non-equilibrium models. The stochastic models also call on 

subroutine MOD12 to evaluate local concentration distributions. 

Numerical integrations required for the two-site/two-region 

and stochastic models are carried out in subroutine ROMB which 

performs an eighth-order Romberg quadrature on a log-transformed 

interval. A relative error (STOPER) of 5xl0-5 is currently used in 

ROMB. For most of our problems, convergence was reached with only 

16-32 quadrature points. This high degree of efficiency was 

achieved in part by using a logarithmic transformation and in part 

by judiciously limiting the integration interval to a small region 

within which the argument of the integral is not negligible. This 

approach concentrates the quadrature points in the region of 

greatest sensitivity. 

The modified lower (Tl) and upper (T2) integration limits 

employed for the two-site/two-region models are (see also Eq. [51]) 

Tl MAX(O. ,A) [73] 

T2 = MIN(TT ,B) [74 J 

where 

[75] 

[76] 

This modified integration interval was obtained by limiting integra­

tion to that region where the exponential function in [56] exceeds 

exp(-20). In instances where a zero lower limit remains, a five 

point Gaussian quadrature is carried out in MOD34 on the interval 
-4 from Oto T2xl0 before passing to ROMB. This procedure was found 

to be more accurate and efficient than a fixed 40-point Gaussian 

quadrature scheme previously applied to the untransformed interval 

(van Genuchten, 1981). 
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To increase computational efficiency, we also narrowed the 

integration limits for the stochastic transport model. Computation 

of these limits in subroutine LIMIT involves incremental searching 

with convergence by the Newton-Raphson method. Reasonable initial 

estimates for the narrowed limits, derived from known properties of 

the probability density function and also using the relationship 

between initial breakthrough and the local Peclet number Pz=x/ £, 

facilitated rapid convergence to suitable limits. For most problems 

that we investigated, subroutine LIMIT required only 10-20 solutions 

for local concentration values, while subsequent numerical 

integration in subroutine ROMB required 16-32 quadrature points. 

Table 1 lists salient features of the eight models, each 

distinguished by a different value for the input parameter MODE. 

Model parameters listed in the table represent the variable 

coefficients for each model, i.e,, coefficients that potentially can 

be fitted to observed data. The deterministic equilibrium models 

(MODE 

(MODE 

1,2) and the two-site/two-region non-equilibrium models 

3,4) each contain six parameters, while the stochastic 

models (MODE= 5,6,7 or 8) contain seven parameters. Note that t
0 

is a fixed input parameter for Models S and 6, while for Models 7 

and 8 the ratio M
0
/8 must be entered. Also note that for the 

stochastic models the probability distribution function for v is 

described by <v> and a1n rather than by µln and a1n. This mode of 

input was deemed more useful because it is much more likely that one 

has an estimate for the mean field velocity <v> rather than µln' the 

latter quantity corresponding to the median of the untransformed 

velocity distribution. For example, <v> can at least in principle 

be estimated from a simple water balance. Due to the log-transfor­

mation, a
1

n represents a dimensionless index of the dispersion of 

the velocity distribution. 

Of the six coefficients in Models 1-4, at most five are 

mutually independent. Thus, for those models a maximum of only five 

parameters can be fitted simultaneously to the observed data. This 
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Table 1. Characteristics of models designated in program CXTFIT 

Model Model Type Concentration Model Report 
number detection mode parameters section 
(MODE) 

1 Deterministic linear Resident v,D,R,t
0

, µ, y 3.1 
equilibrium adsorption 

2 Same as 1 Flux Same as 1 3.2 

3 Two-site/two-region Resident v,D,R,t
0

,f3,w 4.1 

4 Same as 3 Flux Same as 3 4.2 

5 Stochastic linear Resident <v>,e:,R,t
0

, 5.1 
equilibrium adsorption µ,y,oln 
with constant to 

6 Same as 5 Flux Same as 5 5.2 

7 Stochastic linear Resident <v>, e:, R, M
0

/ e, 5.1 
equilibrium adsorption µ, Y, oln 
with constant Mo 

8 Same as 7 Flux Same as 7 5.2 

dependency of at least one of the coefficients follows immediately 

by considering one of the transport equations, for example Eq. [11] 

for the linear equilibrium adsorption model. It is apparent that 

dividing this equation through by a constant permits one of the 

coefficients to be eliminated. Consequently, at least one of the 

coefficients v, D, R, µ or y in [11] must be known independently. 

Because the values of D, µ and y generally are not easily measured 

independently, in practice either v or R (or both) must be known 

beforehand. For non-adsorbing chemicals, R = 1, and the pore-water 

velocity v can be fitted to the data if so desired--a useful 

procedure when poor estimates for v are available, e.g., because of 

uncertainty about the effective water content in the system owing to 



28 

negative adsorption (assuming the flux q to be known), or because of 

experimental problems. For adsorbing chemicals, R can at least in 

principle be estimated using batch-equilibration techniques, thus 

allowing v to be estimated from tracer experiments. On the other 

hand, R is often obtained also by directly fitting this coefficient 

to experimental data, In that case it is imperative that an 

accurate independent estimate for v be obtained first, 

In addition to the mutual dependeny of v and R, we also 

observed in some cases significant interactions between the 

coefficients µ, y and t
0 

(see examples land 2 of section 7). This 

behavior is not surprising since these three parameters, together 

with R, determine the total amount of solute that will be found in 

the porous medium (or in the effluent). Similar interactions also 

occur for Models 5-8, in particular between <v> and Rand betweenµ, 

Y and t
0 

(Models 5, 6) or µ, y and M
0

/ 8 (Models 7, 8). To avoid 

these type of uniqueness problems, we recommend to limit as much as 

possible the number of coefficients that will be fitted to observed 

data. Limiting the number of unknown coefficients is particularly 

important when experimental and medium variabilities create 

uncertainty in the data, 

Appendix B gives instructions for setting up the data input 

file. The first card specifies the number of examples that will be 

executed, The second card specifies the model number (MODE) as 

indicated in Table l and a data input code (NDATA) specifying 

whether the next example uses the same c(x,t) data as in the 

previous example (but for a different model number), or whether new 

data are to be read in, This second card also gives the input 

values for NREDU (a code specifying whether or not the input 

concentrations and times are in dimensionless form), MIT (maximum 

number of iterations allowed during execution), NOB (number of 

observed data points), NSKIP (a code indicating whether the 

following example in the input data file is to be executed or 

skipped--a convenient feature to reduce editing of large input 
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files), and NPRT (a code that allows one to omit input concentration 

data from the computer printout). After two information cards 

(cards 3 and 4), the input file needs a list of names for the six 

coefficients, BI(I), on card 5. Initial estimates for these coeffi­

cients are given on card 6. Table 1 specifies the exact sequence of 

the names and estimates that must be provided. Card 7 lists 6 

indices, INDEX(I), that stipulate whether a certain coefficient is 

to be held constant (INDEX= 0) or fitted to the data (INDEX= 1). 

If a coefficient is assumed to be known, the initial estimate of 

this coefficient on card 6 will remain unchanged during the least­

squares analysis. Card 8 lists CI (the initial concentration) and 

CO (the inlet pulse concentration). Finally, the remaining cards 

are used to enter the observed tracer concentration data as a 

function of observed distances, x, and times, t (see Appendix B for 

required formats). 

Experimental results from laboratory soil columns are often 

presented in reduced form as a function of the number of pore 

volumes T ("'Vt/L) leached through the column. Dimensionless 

effluent concentrations, c, for pulse-type injections are usually 

expressed in the form 

c(z,T) - Ci 
c(z,T) "' C _ C [77] 

0 i 

where c(z,T) is the observed concentration. For effluent data, c in 

[77] represents a flux concentration. A similar reduction into 

dimensionless concentrations may be carried out also for resident 

concentration values when appropriate. As mentioned before, an 

option in the program allows reduced data to be accepted as input. 

By setting input code NREDU = 1, all concentrations are read in as 

reduced values but times are still considered to be actual values. 

Setting NREDU • 2 stipulates the input of reduced concentrations (c) 

as well as reduced times (T). For Models 1-4, the value of t
0 

in 

the input file must then be replaced by its reduced counterpart T0 = 
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vt
0

/L. Finally, when NREDU = 2, the program does not allow v to be 

fitted to the data, which means that the value of v must be 

specified on input. For the stochastic models (MODE = 5-8), time 

reduction may be achieved by substituting <v> for v, provided <v> is 

then also fixed on input. 

The value of L used in defining several dimensionless 

variables, in particular w for Models 3 and 4, is defined internally 

in the program as the maximum value in the x-array. Because of the 

scaled form of [41] and [42], it is apparent from the definitions of 

the dimensionless variables that if values for z, T and T
0 

are 

entered in lieu of x, t and t
0

, and provided v is fixed at unity, 

then the coefficient that occupies the D-field is in actuality 1/P, 

while the other coefficients ( i3 and R) retain their original 

meaning. The same implicit reduction can be applied also to Models 

1 and 2 to obtain 1/P in lieu of D. More generally, any one of the 

coefficients v, D, R, µ or yin Models 1-4 can be arbitrarily fixed 

at unity on input while the other coefficients are entered as 

usual. Beuuse of the linearity of (11] and [21], the input or 

fitted parameters then take on the meaning v/a, D/a, R/a, µ/a or y/a 

where a is the actual value of the fixed coefficient. These 

reductions of the input data can be imposed irrespective of the 

value of NREDU and add more flexibility when applying _the computer 

code to different types of data sets. 
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7. APPLICATIONS 

Several examples have been run with CXTFIT to demonstrate its 

accuracy and versatility. These include a number of hypothetical 

examples used primarily to test the inversion method as well as 

several experimental data sets, 

applications of the program. 

The first example (la) 

thus illustrating practical 

simply calculates hypothetical 

concentration distributions for a reactive solute exhibiting linear 

equilibrium adsorption, zero-order production, and first-order 

decay. The analysis is deterministic with medium coefficients v=25 
-1 2 -1 -1 -3 

cm day , D=100 cm day , R = 2.5, µ=0.25 day and y=0.5 µg cm 
-1 

day The initially solute-free medium (Ci=O) is subjected to a 
-3 

pulse input of C
0

=100 µg cm for a duration t
0 

of 5 days. The 

predicted resident concentrations for depths 0-100 cm at t=5 and 10 

days were calculated by setting MIT=O in the input file. The input 

and output files are shown in Appendices C and D, respectively. 

Results for example la are plotted in Figure 1. 

In example lb, the cr(x, t) data from example la for both t=5 

and 10 days were used as input to the nonlinear regress~on program, 

thus providing a tes.t of the parameter estimation method. The 

parameters D, R, µ and y were estimated from initial input estimates 

of 1.0 for all coefficients. The pore water velocity v was assumed 

to be known independently (at least one non-zero coefficient must be 

known). The fitted parameter values were essentially equal to the 

true values (Table 2), with residuals of the concentrations all 

being less than the roundoff level of the input data (Appendix D). 

Results of nearly the same accuracy were obtained when the inversion 

was restricted to only the t=5 days data (example le, Table 2). 

Attempts to estimate t
0 

in addition to the other four parameters 

indicated a large plateau in the response surface. No convergence 

was obtained with a stop criterion (STOPCR) of O .0005 and with a 

maximum number of trials with no residual decrease within each 

iteration (MAXTRY) set at 50. A larger value for MAXTRY probably 



32 

Table 2. Comparison of fitted transport parameters for example * 1. 

Example D R ll y 

la True values for Cr 100.000 2. 5000 .2500 .5000 

lb 22 point fit to Cr 100.062 2.4990 .2499 .4999 

le 11 point fit to Cr 100.280 2.5006 .2496 .4971 

ld 11 point fit to cf 85.6 2.52 .34 .76 

le 11 point fit to cf 161. 7 3.00 (.25) (.SO) 

*o in cm2 day-1 , ll in day-l, y in ll8 cm-3 day-l; values in paren­
thesis were fixed on input. 
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Figure 1. Hypothetical and fitted 
distributions for deterministic linear 
(example 1 using Model 1). 
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would have facilitated estimation of t
0 

also. However, in most 

cases t
0 

will be known, rendering its estimation unnecessary. 

Boundary conditions appropriate for the analysis of flux 

concentrations have frequently been used to interpret data assumed 

to represent resident concentrations. To evaluate the effect of 

fitting the flux concentration solution to observed resident 

concentration data, the parameters in Model 2 for cf were fitted to 

the t=5 data for er. As shown by example ld in Table 2, the fitted 

coefficient values in this case do not compare well with the "true" 

values. Withµ and y fixed at their correct values, a two-parameter 

fit greatly overestimated D and R (example le, Table 2). This over­

estimation is a characteristic occurrence when resident concentra­

tions are misintepreted as flux concentrations (Parker and van 

Genuchten, 1984). The converse will be found when flux concentra-

tions are interpreted as resident concentrations. 

Example 2a predicts hypothetical flux concentrations for the 

two-site/two-region non-equilibrium model (Model 4) using as 

parameter values v=lO cm day-l, D=l.5 cm2 day-l, R .. J.O, fl =0.3 

and w=2.5 (based on L=40 cm). A 2.5 day (t
0

) long pulse of 

concentration C
0

=500 µg cm-3 is applied to an initially solute-free 

medium (Ci=O). Predicted concentrations at x=20 and 40 cm from Oto 

12 days are shown in Figure 2. In example 2b, these predicted 

concentrations are used in the inversion program to estimate D, R, 

t
0

, fl and w, using as starting values for these coefficients 10 cm2 

day-1 , . 5.0, 1.0, 0.5 and 1.0, respectively. In 10 iterations the 

program converged to the correct values within a relative error of 

0.0001 (see Appendix D). Using the concentration data for only one 

of the depths, the program failed to converge to the correct 

parameter values when all five parameters were fitted. However, the 

program converged correctly when t
0 

was fixed and the remaining four 

parameters were estimated from the smaller data sets. 

The third example is used to analyze a column tracer 

experiment reported by Parker (1984). The experiment was conducted 
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Figure 2. Hypothetical and fitted flux concentration distributions 
for deterministic two-region/two-site nonequilibrium model (example 
2 using Model 4). 

on a cylindrical column 52 mm in diameter, 190 mm long, filled with 

a mixture of sand and a small amount of cement as a binding agent. 

The column contained a straight 1.7 mm diameter "wormhole" passing 

axially through the center of the medium. Effluent from the column, 

subjected to steady saturated flow, was collected subsequent to the 

addition of O. 65 pore volumes of a bromide tracer to an initially 

Br-free pore solution. In total about 1.8 pore volumes of effluent 

were collected. A similar experiment was performed on a replicate 

column, but in this case the column was sectioned into 19 mm depth 

intervals immediately following the addition of the bromide pulse. 

The column sections were extracted to determine the Br resident 

concentration distribution at the time of sectioning. 

The bromide effluent curve (Fig. 3) is plotted in terms of 

reduced concentrations versus reduced times or pore volumes. The 
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Figure 3. Experimental bromide effluent curve for packed sand with 
"wormhole", and fitted curves for bulk continuum model (Model 2) and 
two-region model (Model 4). 

mean pore water velocity v determined from the measured hydraulic 

flux (39.7 m day-1) and water content (0.371 cm3 cm-3) was 107 m 

day-l. Assuming no bromide adsorption (positive or negative), R was 

taken to be unity. Effluent concentrations and corresponding times 

were entered in the program as reduced values c(T), while also a 

reduced pulse duration T
0 

was used in lieu of t
0 

(NREDU=2). 

Finally, because reduced variables are used and because y=µ=O, we 

may simply set Ci=O and C0 =1. 

If the porous medium is viewed as a simple continuum, then 

Model 2 for cf should be used to analyze the effluent data. In our 

example only Dis unknown. The fitted value for D (see example 3a, 

Appendix D) was found to be 8745 m2 day-1• Alternatively, one may 

view the bromide experiment as a two-region transport problem, in 

which case Model 4 should be applied. With R=l, the values of 
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D, fl and w in this model were found to be 300 m2 day -l, 0, 043 and 

0.103, respectively. Figure 3 shows that Models 2 and 4 describe 

the experimental data with comparable accuracy. Hence, there is in 

this case little advantage in adopting the two-region model with 

three parameters instead of the much simpler bulk continuum model 

with only one adjustable parameter. 

The importance of distinguishing between resident and flux 

concentrations may be evaluated by using the fitted value for D, 

based on Model 2 for cf, to predict with Model 1 the resident 

concentration distribution (er) at the time the second column was 

sectioned. These predicted values are compared in Figure 4 with the 
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Figure 4. Experimental resident concentration distribution in 
"wormhole" column and predicted distribution from Model 1 using D 
fitted to the effluent data of Figure 3 with Model 2, 
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measured resident values representing mean concentrations in each 19 

mm section. The correspondence is very close except in the upper-

most section in immediate contact wth the influent solution. The 

discepency here may be expected owing to assumptions implicit in the 

macroscopic description of the boundary region at or near x=0 

(Parker, 1984). In any case, this example emphasizes the importance 

of distinguishing between resident and flux concentrations. The 

data show that the reduced flux-averaged effluent concentration was 

about 0.98 at the time the column was sectioned, while the resident 

concentration in the column near the exit was only 0.02. Failure to 

realize that the effluent concentration is not equal to the resident 

concentration at the exit would make it impossible to fit D with 

Model l to the effluent data using the measured value for the pore 

water velocity. A two-parameter fit of Model l with variable v and 

D would actually lead to an estimate for the pore-water velocity 

that is about 1000 times greater than the measured value, thus 

suggesting that a large fraction of the pore space was effectively 

excluding the bromide tracer. This conclusion is unwarranted and 

unnecessary when the transport model is chosen to correspond to the 

proper solute detection mode. 

Example 4 considers the movement of boron through Glendale 

clay loam (Exp. 3-1 of van Genuchten, 1974). A boron tracer pulse 

of duration t
0

=5.06 days and having a concentration of C
0

=20 µg cm-3 

was leached through an initially solute-free 30 cm long column. The 

measured pore water velocity was 38.S cm day-l. Reduced concentra­

tion and times were used (NREDU=2); hence, T
0

=vt
0

/L was entered in 

lieu of t
0 

as a known input parameter for the pulse duration. 

Assuming non-equilibrium ads·orption and noting that flux concentra­

tions must be used to describe effluent data, we employed Model 4 to 

fit the coefficients D, R, fl and w. The final parameter estimates 

and the sum of squared residuals (SSQ) of the observed versus fitted 

concentrations for two different sets of initial estimates (examples 

4a,b) are shown in Table 3. Results of example 4a, which yielded 
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the lowest SSQ, are compared with the experimental data in Figure 

5. Note that the initial estimates for example 4b yielded fitted 

coefficient values with a higher SSQ using the currently set stop 

criteria (STOPCR and MAXTRY). Clearly, the program can converge to 

local minima with erroneous final estimates. Critical to correct 

and relatively rapid convergence is a good initial estimate of the 

product SR, For negligible dispersion (D=O), this product is 

equivalent to the number of pore volumes T at which the tracer 

initially appears in the effluent (van Genuchten and Cleary, 1979). 

From the experimental data in Figure 5, we may estimate the 

product f3R to be about 2.0 (initial boron breakthrough) to 3.0 (the 

value of T at a reduced concentration of approximately 0.5). For 

not too wild initial guesses for D and w, we always obtained 

convergence to the final estimates of example 4a in Table 3 when the 

initial estimates for S and R were such that 1.5 < SR < 4. For 

other estimates, the program sometimes converged to the same 

estimates, sometimes converged to estimates with higher SSQ-values, 

or sometimes diverged. Consequently, a reasonable initial guess for 

the product SR is essential when applying the two-site/two-region 

Table 3. Fitted parameter values and associated residual SSQ's for 

* example 4 for two sets of initial estimates. 

Example D R s w SSQ 

4a. Initial values 2.00 10.00 .200 .200 

Final values 47.7 4.30 .600 .424 .053 

4b. Initial values 1.0 1.00 .500 .200 

Final values 216. 3.58 .564 14.2 .142 

* cm2 -1 
D in day ; other parameters are dimensionless. 
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Figure 5. Experimental and fitted boron effluent curves for 
Glendale clay loam (example 4 using Model 4). 

non-equilibrium model. We finally note that the fitted parameter 

values of example 4a (Table 3) obtained here with a Romberg integra­

tion scheme are the same as those obtained previously with a 40-

point Gaussian quadrature scheme (van Genuchten, 1981). 

Example 5 involves again a hypothetical case and dee.ls with 

the stochastic regional transport model applied to a field subject 

to a mean velocity <v> of 25 cm day-l with a standard deviation for 

the logarithmic probability density distribution (o1n) of 1.37. The 

initially solute-free medium ( Ci=O) is subjected to a uniform dose 

of solute (M
0

) of 10,000 µg cm-2, which for 8=0.5 yields the input 

parameter SOLOAD = M /8 = 20,000 J.8 cm- 2 • We assume the inlet 
0 

solute concentration (C
0

) to be 1,000 18 cm-3 and take e:=10 cm, 

R=5.0 and JJ"''f=O.O. Figure 6 shows calculated concentration profiles 
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Figure 6. Hypothetical and fitted resident concentration distri-
butions for stochastic transport model (example 5 using Model 7). 

{Model 4; MIT=0) from 0 to 500 cm and for t=l, 5 and 10 days 

(example Sa). Using 30 input data points for the combined times and 

initial guesses of 10 cm day-l for <v> and unity for the other 

parameters, the inversion program yielded estimates for <v>, E, R 

and a
1

n with a maximum error of 0.0001 from the correct values 

(example Sb, Appendix D). The program converged to incorrect 

parameter values when in addition Mi 8 was fitted to the data. 

Execution terminated with parameter values fixed on a very flat 

response surface with SSQ still large. In such cases it is 
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sometimes possible to move off the plateau in the response surface 

by decreasing ST0PCR and increasing MAXTRY. In less troublesome 

circumstances, greater computational efficiency will be obtained, 

however, when ST0PCR is relatively large and MAXTRY relatively small 

(see also our comments on uniqueness problems in the previous 

section). 

The final example considers a case of field-scale stochastic 

transport. Unfortunately, field measurements suitable for testing 

and calibrating stochastic transport models are scarce. Jury et al. 

(1982) reported areally-averaged concentrations over a 0.64 ha field 

subjected to a bromide pulse of fixed duration and subsequently 

leached under transient hydraulic conditions. The stochastic model 

presented here does _not strictly apply to transient conditions. 

However, by invoking some approximate transformations of temporal 

variables, the model can be extended in an approximate manner also 

to transient conditions. 

Let us define a time-averaged flux (q)*, a time-averaged water 

content (8)*, and a time-averaged pore water velocity <v>* as 

follows: 

1 t 
<q>* =t J m (q)( T) dT 

m 0 
[78] 

1 
t 

(8)* Jm<8)(T) dT 
t 0 m 

[79] 

<v>* 
,. (q)* [80] 

<a>* 

where (q) and < 8) respectively represent the actual time-dependent 

areally-averaged fluxes and water contents over the time interval 

t•0 to tm of interest. We assume <q>* and (8)* to be independent of 

x. For (q)* this assumption implies that there are no fluid sources 

or sinks in the flow region, while tm must be relatively large. For 

< 8)*, the additional constraint of medium homogeneity in the x 
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direction is implied. If these assumptions are not appropriate and 

information regarding the variation of (q) and <e> with x is 

available, an approximate transformation of the space coordinate may 

be imposed in the manner of Bresler and Dagan (1981): 

x* = «v>*(x)> x 
<v>*(x) [81] 

where (v)*(x) is the temporally- and areally-averaged velocity at 

distance x, while <<v>*(x)> represents the mean of <v>* over all 

x. We will not impose the latter transformation but instead take 

<v>* as constant and calculate (q)* by means of a water balance at 

x=0. Transformation of the time variable itself is accomplished 

with 

t* [82] 

where the numerator represents the cumulative flux until time t. To 

implement this model for temporally transformed data, we need to 

estimate t* and <v>* instead of t and <v>. Averaging the data of 

Jury et al. (1982) over a period of 100 days yields (q)*=5,9 mm 

day-1 • From <q>* and the reported values of the cumulative net 

amount of applied water versus areally-averaged concentrations, we 

may calculate the times t* that correspond to these measured 

concentrations. Since (6)* is not known, <v>~ cannot be calculated 

directly, However, a reasonable first guess of <v>* for the 

inversion program can be obtained by using (6)*=0,2. Application of 

the tracer was accomplished by means of a uniform 10--mm irrigation 

over the entire field, By regarding the measured concentrations as 

resident values, we may use Model 5 to analyze the data, The input 

value of t
0 

for that purpose was replaced by the transformed pulse 

time t~, which according to [82] equals 10/<q>*•l.69 days. We 

further assume Ral,0 and 11"")'"'0,0 for bromide transport. The program 

can now be used to calculate <v>*, £ and a
1
n. 
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Using 10 values for er that were estimated from observations 

at x=-30 cm from t*=0 to 50 days, the fitted coefficient values were 
-1 found to be <v>*=30.5 mm day , t=l.0 mm and o

1
n=0.800 (example 6a, 

Table 4). The results indicate that the estimated value of E inclu­

des zero within the 95% confidence limits. To further investigate 

the implications of this uncertainty in the estimation of local 

dispersivity, we fitted <v>* and o1n to the data while fixing E at 

various values. The results (examples 6b-6e, Table 4) show that the 

fitted values of <v>* and o1n are little affected by variations in E 

between 0.1 and 10.0 mm. Much larger values of E, however, cause 

SSQ to increase while o1n decreases to compensate for the high local 

dispersion. It is apparent that local-scale dispersion is small 

compared to the effects of areal velocity variations on resultant 

field-scale distributions, Noting that the program requires E)0, it 

is therefore justifiable to fix E in this instance at some small 

value, If the stochastic model is forced to degenerate to the 

deterministic monocontinuum model by fixing o1n=0 (example 6f, Table 

4), the best fit for E is 123 mm, yielding a markedly higher SSQ 

than when o1n i' 0. 

Table 4. Fitted model parameters for example 6. * 

Example E <v>* 01n 
SSQ 

6a 1.0 ± 227. 30,5 ±21.0 ,800 ± ,943 ,0005177 

6b (. 1) 30.5 ± 1.8 .803 ± ,060 .0005182 

6c (L) 30.5 ± 1.8 .800 ± .060 .0005177 

6d (10.) 29.7 ± 1.7 .763 ± ,063 .0005182 

6e (100.) 24.7±1.6 .370 ± .143 .00056 

6f 123, ± 22, 23.6 ± 1.4 (0.0) .00061 

* values ± the standard error; units of E in mm and <v>* in mm 
-1 

day ; 
values in parenthesis were fixed on input. 
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Observed and fitted concentration-time curves for the 30 cm 

depth are plotted in Figure 7a. Using the coefficient values fitted 

to the 30 cm depth data (example 6a), e/t*) distributions were 

calculated for depths of 60 cm and 90 cm. Figures 7b and 7c compare 

these predicted concentrations with the measured values. The 

tendency for the predicted time of maximum concentration to lag 

somewhat behind the measured peak time may be due to a variation in 

< 8) and hence in <v> with depth in contrast to the homogeneity 

assumption invoked in our analysis. Implementation of a coordinate 

transformation, as previously mentioned, may alleviate this 

problem. On the other hand, the shift in peak concentration could 

be attributable also to uncertainties in the measured e -values. r 
Owing to the rather small sampling size of 14 for each concentration 

value, Jury et al. (1982) indicated experimental errors in er of 

about 0.05 C
0 

units at the 95% confidence level. A more stringent 

test of this or any other stochastic transport model will require a 

considerably greater sampling density within the transport region. 

Figure 7. Experimental areally-averaged concentrations er at three 
depths as a function of transformed time t* for bromide transport in 
a field soil. (a) Data for 30 cm depth and fitted curve using Model 
5; (b) data for 60 cm depth and predicted curve using parameter 
values fitted to the 30 cm depth data; (c) same as b for the 90 cm 
depth data. 



46 

8. SUMMARY AND CONCLUSIONS 

The least-squares inversion method discussed in this report 

provides a convenient, efficient and accurate means of fitting 

various transport parameters 

concentration distributions. 

to observed spatial and/or temporal 

Both equilibrium and two-site/two-

region type non-equilibrium transport models can be implemented in 

the program. The linear equilibrium adsorption model also includes 

terms accounting for zero-order production and/or first-order decay. 

In addition, a stochastic model is described that can be applied to 

field-scale problems involving log-normally distributed pore water 

velocity dist ri bu tions. This model also includes provisions for 

zero- and first-order production/decay processes. All models are 

formulated in terms of both flux-averaged concentrations (applicable 

to column effluent curves) and volume-averaged concentrations 

(applicable to in situ or resident concentrations). Several example 

problems illustrating practical applications of the inversion 

program are discussed in detail. 
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10. APPENDIX A, Ligt of the most significant variables in CXTFIT 
(units in brackets, L is dimensic>nless). 

Variable 

BETA 

BETR 

B(I) 

BI(I) 

C(I) 

CI 

co 

D 

DISP 

DR 

INDEX(!) 

MAXTRY 

Definition 

Dimensionless coefficient B for Models 3 and 4 [L0 J. 

Value of B/R in Models 3 and 4 [L0 J. 

Vector containing estiE!ates of the coefficients: 
v,D,R,t

0
, µ and y for Mc,dels 1 and 2, 

v,D,R,t
0

, Band w for Mc1dels 3 and 4, 
<v),E,R,t

0
,µ,y and a

1
n for Models 5 and 6, or 

<v),E,R,M
0
/8,µ,y and a

1
n for Models 7 and 8, 

Vector of coefficient names. 

Concentratio~
3 

for I-th observation corresponding to X(I) 
and T(I) [ML ] • 

Uniform initial concentration, Ci [ML-3). 

Concentration of the ir1let solution, C
0 

[ML-3]. 

2 -1 
Dispersion coefficient [LT ]. 

Dispersivity E for Mode,ls 5-8 [L). 

Value of D/R [L2T-1]. 

Index for each coefficient. If INDEX(!)• 0, the coeffi­
cient B(I) is known and kept constant; if INDEX(!) • 1, 
the coefficient is as11umed to be unknown and fitted to 
the data. 

Maximum number of tria.ls allowed within an iteration to 
find new parameter values that decrease SSQ (currently 
set at 50 in the progra1m). 
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MIT Maximum number of iterations allowed in the least-squares 
analysis. If MIT=O,, the least-squares inversion part is 
bypassed and the prc,gram calculates and prints concentra­
tions for given input values of x, t and the different 
parameters; dummy values of C(I) and INDEX(!) are then 
still read in but not used in the program. 

MODE Model number specifying type of transport model and 
boundary conditions to be used (see Table 1 in text). 

NC 

NDATA 

NIT 

NOB 

NP 

NPRNT 

NREDU 

NSKIP 

OMEGA 

R 

RXO 

RXOR 

RXl 

RXlR 

SDLN 

Number of cases considered. 

Data input code. If NDATA=l, new cards are read in for 
that case, if NDATA,.O, all or part of the data from the 
previous example are used for the new problem. 

Iteration number in least-squares analysis. 

Number of observations (cannot exceed 90 with currently 
dimensioned arrays). 

Number of variable parameters to be fitted to the data. 

Output print code. If NPRNTsl, the input c(x,t) array is 
printed out; NPRNT=O suppresses this printing. 

Data input code. If NREDU=O, input concentrations and 
times are not reduced. If NREDU=l, only the input concen­
trations are reduced. If NREDU•2, input concentrations 
and times are both a:ssumed to be dimensionless. 

Input file execution code. If NSKIP•O, the problem is 
executed; if NSKIP*O, the problem is read in but not 
executed. 

Dimensionless coefficient w for Models 3 and 4 [L0
]. 

Retardation factor [L0
]. 

Zero-order rate constant, y (positive for production, 
negative for decay) [ML-JT-1). 

Value of y/R [ML-JT-1]. 

-1 First-order decay constant, 1J [T ) , 

Value of )J/R [T-1), 

Value of a1n in Models 5-8, 



SOLOAD 

STOPCR 
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Value of M/8 in Models 7 and 8 [ML-2]. 

Stop criterion. The curve-fitting process stops when the 
relative change in the ratio of all coefficients becomes 
less than STOPCR (currently set to .0005 in the program). 

T(I) Time corresponding to the I-th observed concentration 
value [TJ. 

TITLE 

TO 

V 

VLNM 

VR 

X(I) 

XL 

z 

Vector containing inf,)rmation of title cards. 

Pulse duration for Models 1-6, 

Pore water velocity, v [LT-1). 

Value of 111n in Modeb 5-8. 

Value of v/R [LT-l] 

Distance from source corresponding to the I-th observed 
concentration value [L]. 

Maximum value L of X(I) array [L]. 

Dimensionless distance, x/L [L0
]. 



11. APPENDIX B. Data input instructions. 

Card Columns Format Variable Comments 

1 1-10 IlO NC Number of cases considered. 

2 

2 

2 

2 

2 

2 

2 

3 

4 

5 
5 
5 
5 
5 
5 
5 

1-10 

11-20 

21-30 

31-40 

41-50 

51-60 

61-70 

1-80 

1-80 

5-10 
15-20 
25-30 
35-40 
45-50 
55-60 
65-70 

IlO 

no 

IlO 

no 

no 

no 

no 

20A4 

20A4 

A4,A2 
A4,A2 
A4-A2 
A4,A2 
A4,A2 
A4,A2 
A4,A2 

MODE 

NDATA 

NREDU 

MIT 

NOB 

NSKIP 

NPRNT 

TITLE 

TITLE 

BI(l) 
BI(2) 
BI(3) 
BI(4) 
BI(5) 
BI(6) 
BI(7) 
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The remaining cards are read in 
for each case. If NDATA=O on 
card 2, data cards 9, etc. are 
not needed for that particular 
case. 

Model number. See Table 1 of 
text for explanation. 
New data input code. See Ap­
pendix A for explanation. 
Reduced data input code. See 
Appendix A for explanation. 
Maximum number of iterations. 
See Appendix A for explanation. 
Number of observations. See 
Appendix A for explanation. 
Input execution code. See Ap­
pendix A for explanation. 
Output print code. See Appen­
dix A for explanation. 

Information card 1. 

Information card 2. 

Name of each coefficient B(I). 
Coefficient 7 applies only for 
Models 5-8. See Appendix A and 
Table 1 of text for additional 
explanation. 
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6 1-10 FlO.O B(l) Initial value for each coeffi-
6 11-20 FlO.O B(2) cient. See Table 1 of text. 
6 21-30 FlO.O B(3) 
6 31-40 FlO.O B(4) 
6 41-50 FlO.O B(5) 
6 51-60 FlO.O B(6) 
6 61-70 FlO.O B(7) 

7 1-10 IlO INDEX(l) Index for each coefficient. 
7 11-20 IlO INDEX(2) See Appendix A and text for 
7 21-30 IlO INDEX(3) explanation. 
7 31-40 IlO INDEX(4) 
7 41-50 IlO INDEX(5) 
7 51-60 IlO INDEX(6) 
7 61-70 IlO INDEX(7) 

8 1-10 FlO.O CI Initial concentration. 
8 11-20 FlO.O co Influent concentration. 

9 1-10 FlO.O C(I) Value of the Ith observed con-
entration (blank for MIT=O). 

9 11-20 FlO.O X(I) Distance from source for obser-
vation I. 

9 21-30 FlO.O T(I) Elapsed time for observation I. 

Card 9 is repeated NOB times. 
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12. APPENDIX C. 

Input files for selected examples 
discussed in text. 
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1 2 3 4 5 6 7 
1234567890123456789012345678901234567890123456789012345678901234567890 

7 
1 1 0 0 22 0 

EX.1A: HYPOTHETICAL CASE OF EQUILIBRIUM ADSORPTION 
(UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

V..... D..... R..... TO.... RX1 ... 
25.0 100.0 2.5 5.0 0.25 

0 0 0 0 0 
o.o 100.0 

o.o 5.0 
10.0 5.0 
20.0 5.0 
30.0 5.0 
40.0 5.0 
50.0 5.0 
60.0 5.0 
70.0 5.0 
80.0 5.0 
90.0 5.0 
25.0 5.0 
0.0 10.0 

10.0 10.0 
20.0 10.0 
30.0 10.0 
40.0 10.0 
50.0 10.0 
60. 0 10. 0 
70.0 10.0 
80.0 10.0 
90. 0 10. 0 

100.0 10.0 

RXO ... 
0.5 

0 

1 1 0 30 11 0 
EX.1C: HYPOTHETICAL CASE OF EQUILIBRIUM ADSORPTION 
FIT TO EX.1A DATA (UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

V..... D..... R..... TO.... RX1... RXO ... 
25.0 1.0 1.0 5.0 1.0 1.0 

0 1 1 0 1 1 
o. 0 100. 0 

96.23 0.0 5.0 
86.84 10.0 5.0 
76.73 20.0 5.0 
64.66 30.0 5.0 
50.24 40.0 5.0 
34.71 50.0 5.0 
20.75 60.0 5.0 
10.63 70.0 5.0 
4.75 80.0 5.0 
2.08 90.0 5.0 
1.13 100.0 5.0 

4 1 0 30 30 0 
EX.2B: HYPOTHETICAL CASE OF NONEQUILIBRIUM TRANSPORT 
(UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

0 

0 

0 



v..... o ..... 
10.0 1.0 

0 1 
0.0 500.0 

R •••.• 
1. 0 

1 

0.0 20.0 0.2 
0.0 20.0 0.4 
0.00 20.0 0.6 
0.04 20.0 0.8 
1.36 20.0 1.0 

49.95 20.0 1.5 
134.25 20.0 2.0 
206.49 20.0 3.0 
198.76 20.0 4.0 
105.25 20.0 5.0 
89.12 20.0 6.0 
77.63 20.0 7.0 
67.25 20.0 8.0 
49.70 20.0 10.0 
36.12 20.0 12.0 
0.0 40.0 0.2 
0.0 40.0 0.4 
o.o 40.0 0.6 
0.0 40.0 0.8 
0.0 40.0 1.0 
0.00 40.0 1.5 
0.01 40.0 2.0 

11.64 40.0 3.0 
56.57 40.0 4.0 
90.53 40.0 5.0 
90.09 40.0 6.0 
80.44 40.0 7.0 
78.75 40.0 8.0 
73.38 40.0 10.0 
65.08 40.0 12.0 

PULSE. 
1.0 

1 

BETA .. 
0.5 

1 

2 1 2 30 14 

OMEGA. 
1. 0 

1 

0 
EX.3A: BROMIDE EFFLUENT FROM 'WORMHOLE' COLUMN 
(UNITS: ~ETERS, DAYS, ARBITRARY MASS UNITS) 

V..... D..... R..... PULSE. RXl ... 
107.0 10.0 1.0 0.65 0.0 

0 1 0 0 0 
0.0 1.0 

0.8060 0.19 
0. 9420 0. 19 
0.9650 0.19 
0. 9600 0. 19 
o. 9800 0.19 
0.8820 0.19 
0.1850 0.19 
0.0226 0.19 
0.0101 0.19 
0.0077 0.19 
0.0064 0.19 
0.0057 0.19 
0.0054 0.19 
0.0050 0.19 

0.030 
0. 147 
0.272 
0.410 
0.558 
0.613 
0.662 
0.798 
0.949 
1 .093 
1 .244 
1 .409 
1.578 
1. 751 

RXO ... 
0.0 

0 
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4 1 2 30 30 0 
EX.4A: BORON EFFLUENT FROM GLENDALE CLAY LOAM 
(UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

V..... D..... R..... PULSE. BETA .. OMEGA. 
0.2 

1 
38.5 2.0 10.0 6.49 0.2 

0 1 1 0 1 
0.0 20.0 

0.015 30.0 1.80 
0.075 30.0 1.95 
0.170 30.0 2.10 
0.265 30.0 2.25 
0.340 30.0 2.40 
0.430 30.0 2.60 
0.535 30.0 2.85 
0.620 30.0 3.15 
0.687 30.0 3.50 
0.738 30.0 4.00 
0.777 30.0 4.60 
0.819 30.0 5.30 
0.852 30.0 6.00 
0.880 30.0 6.70 
0.882 30.0 7.30 
0.852 30.0 7.75 
0.776 30.0 8.00 
0.699 30.0 8.25 
0.621 30.0 8.55 
0.527 30.0 8.90 
0.433 30.0 9.30 
0.357 30.0 9.80 
0.269 30.0 10.50 
0.186 30.0 11.50 
0.133 30.0 12.70 
0.090 30.0 14.00 
0.054 30.0 15.50 
0.040 30.0 17.00 
0.029 30.0 18.50 
0.025 30.0 20.00 

7 1 0 30 30 0 
EX.58: HYPOTHETICAL REGIONAL TRANSPORT PROBLEM 
FIT TO EX.5A (UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

<V>... DISP.. R..... SOLOAD RXl... RXO ... 
10.0 1.0 1.0 20000.0 0.0 0.0 

1 1 1 0 0 0 
0. 0 1000. 0 

68. 14 10. 00 
15.26 25.00 
2.84 50.00 
0.87 75.00 
0.35 100.00 
0. 09 150. 00 
0.03 200.00 
0. 01 300. 00 
0.00 400.00 
0.00 500.00 

94.94 10.00 

1. 00 
1. 00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
5.00 

0 

0 

SD~N .. 
1.0 

1 
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41.89 25.00 5.00 
14.91 50.00 5.00 
6.85 75.00 5.00 
3.67 100.00 5.00 
1.39 150.00 5.00 
0.65 200.00 5.00 
0.21 300.00 5.00 
0.09 400.00 5.00 
0.04 500.00 5.00 

79.38 10.00 10.00 
45.49 25.00 10.00 
20.94 50.00 10.00 
11.34 75.00 10.00 
6.86 100.00 10.00 
3.07 150.00 10.00 
1.63 200.00 10.00 
0.62 300.00 10.00 
0.29 400.00 10.00 
0.16 500.00 10.00 

5 1 1 30 10 0 
EX.6A: FIELD-SCALE BROMIDE MOVEMENT (JURY ET AL.,1982) 
(UNITS: MILIMETERS, DAYS, ARBITRARY MASS--REDUCED C) 

<V>*.. DISP.. R..... PULSE. RXl... RXO ... 
25,0 100.0 1.0 1.69 0.0 0.0 

1 1 0 0 0 0 
0.0 1.0 

0.062 300.0 
0.076 300.0 
0.059 300.0 
0.038 300.0 
0.014 300.0 
0.007 300.0 
0.004 300.0 
0.003 300.0 
o. 001 300. 0 
0.000 300.0 

5.0 
10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 
45.0 
50.0 

0 

SDLN .. 
1. 0 

1 
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13. APPENDIX D 

Output files for selected examples 
discussed in text. 
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********************************************************************************** 
* * * ONE-OIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION * 
* 
* 
* 
* 
* 
* 
* 
* 

DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FOR PULSE INJECTION 
WITH FIRST- AND ZERO-ORDER PRODUCTION AND DECAY 
SOLUTION FOR RESIDENT CONCENTRATIONS 

EX.lA: HYPOTHETICAL CASE OF EQUILIBRIUM ADSORPTION 
(UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

* 
* 
* 
* 
* 
* 
* 
* ********************************************************************************** 

INITIAL VALUES OF COEFFICIENTS 

NAME 
v ........ . 

INITIAL VALUE 
25.0000 

D ••••••••• 
R ••••••••• 
TO ....... . 
RXl ...... . 
RXO .•...•. 
Cl ....... . 
co ....... . 

100.0000 
2.5000 
5.0000 
0.2500 
0.5000 
0.0 

100.0000 

---------RESULTS FOR INITIAL COEFFICIENT VALUES---------
NO DISTANCE TIME CONCENTRATION 

1 o. 0 5.0000 96.2355 
2 10.0000 5.0000 86.8428 
3 20.0000 5.0000 76.7266 
4 30.0000 5.0000 64.6646 
5 40.0000 5.0000 50.2391 
6 50.0000 5.0000 34.7099 
7 60.0000 5.0000 20.7448 
B 70.0000 5.0000 10.6034 
9 80.0000 5.0000 4.7493 

10 90.0000 5.0000 2.0823 
11 25.0000 5.0000 70.9998 
12 o.o 10.0000 0.2022 
13 10.0000 10.0000 1.0973 
14 20.0000 10.0000 3.4644 
15 30.0000 10.0000 8.3961 
16 40.0000 10.0000 16.1408 
17 50.0000 10.0000 25.2015 
18 60.0000 10.0000 32.6311 
19 70.0000 10.0000 35.9173 
20 80.0000 10.0000 34.4879 
21 90.0000 10.0000 29.5869 
22 100.0000 10.0000 23.1039 
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********************************************************************************* 

* ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION * 
NON-LINEAR LEAST-SQUARES ANALYSIS * 

* 
DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FOR PULSE INJECTION * 
WITH FIRST- AND ZERO-ORDER PRODUCTION AND DECAY * 
SOLUTION FOR RESIDENT CONCENTRATIONS * 

* EX.1C: HYPOTHETICAL CASE Of EQUILIBRIUM ADSORPTION * 
FIT TO EX.1A DATA (UNITS: CENTIMETERS, DAYS, MICROGRAMS) * 

* ********************************************************************************* 

NITIAL VALUES Of COEFFICIENTS 

NAME INITIAL VALUE 

o ....... . 
X1 ...... . 
XO ...... . 
I •••••••• 
o ....... . 

TERATION 

25.0000 
1.0000 
1.0000 
5.0000 
1.0000 
1.0000 
0.0 

100.0000 

SSQ 
0 3917. 13832 
1 3912.71790 
2 458.36066 
3 90.39628 
4 16.03210 
5 0.81370 
6 0.00828 
7 0.00039 
8 0.00038 
9 0.00038 

ORRELATION MATRIX 
-----------------

1 2 
1 1. 0000 
2 0.8601 1 .0000 
3 -0.9592 -0.8974 
4 -0.6091 -0.2490 

SQUARE FOR REGRESSION Of 

D ..... 
1.00000 
1.00000 
9.82327 

25.50612 
59.46360 
89.70647 
99.49115 

100.25669 
100.27995 
100.28036 

3 

1.0000 
0.6051 

OBSERVED vs 

R ..... RX1 ... RXO ... 
1.00000 1.00000 1.00000 
1.49210 1 .00000 1.00000 
1.94834 0.39060 2.85959 
2.04880 0.41171 1.09147 
2.24656 0.34172 0.54057 
2.43398 0.27487 0.48151 
2.49552 0.25169 0.49078 
2.50052 0.24964 0.49666 
2.50062 0.24960 0.49705 
2.50062 0.24960 0.49706 

4 

1.0000 

PREDICTED=0.99999997 



NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS 
=======~======================================== 

VARIABLE 
1 
2 
3 
4 

NAME 
D ..... 
R ••••• 
RXl ••. 
RXO ••• 

VALUE 
100.28036 

2.50062 
0.24960 
0.49706 

-----------------------ORDERED BY 

NO 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

DISTANCE 
o.o 

10.0000 
20.0000 
30.0000 
40.0000 
50.0000 
60.0000 
70.0000 
80.0000 
90.0000 

100.0000 

TIME 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 

---------------------------ORDERED 

NO 
8 

11 
5 
3 
1 
4 
6 
2 

10 
7 
9 

DISTANCE 
70.0000 

100.0000 
40.0000 
20.0000 
0.0 

30.0000 
50.0000 
10.0000 
90.0000 
60.0000 
80.0000 

TIME 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 

S.E.COEFF. 
0. 15469 
0.00066 
0.00030 
0.00413 

T-VALUE 
648.29 

3768.48 
840.28 
120.34 

95% CONFIDENCE 
LOWER 
99.91460 

2.49905 
0.24890 
0.48730 

COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS FITTED DUAL 
96.2300 96.2293 0.0007 
86.8400 86.8437 -0.0037 
76.7300 76.7272 0.0028 
64.6600 64.6615 -0.0015 
50.2400 50.2360 0.0040 
34.7100 34.7133 -0.0033 
20.7500 20.7558 -0.0058 
10.6300 10.6163 0.0137 
4.7500 4.7578 -0.0078 
2.0800 2.0848 -0.0048 
1.1300 1.1250 0.0050 

BY RESIDUAL----------------------------
CONCENTRATION RESI-

OBS FITTED DUAL 
10.6300 10.6163 0.0137 

1.1300 1.1250 0.0050 
50.2400 50.2360 0.0040 
76.7300 76.7272 0.0028 
96.2300 96.2293 0.0007 
64.6600 64.6615 -0.0015 
34.7100 34.7133 -0.0033 
86.8400 86.8437 -0.0037 
2.0800 2.0848 -0.0048 

20.7500 20.7558 -0.0058 
4.7500 4.7578 -0.0078 

LI Ml TS 
UPPER 
100.64612 

2.50219 
0.25031 
0.50683 

°' °' 



********************************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION 
NON-LINEAR LEAST-SQUARES ANALYSIS 

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR 
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY 
SOLUTION FOR FLUX CONCENTRATIONS 

EX.2B: HYPOTHETICAL CASE OF NONEQUILIBRIUM TRANSPORT 
(UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************************** 

INITIAL VALUES OF COEFFICIENTS 

NAME INITIAL VALUE 
V ........ . 
D ••••••••• 
R ••••••••• 
PULSE. ... . 
BETA ..... . 
OMEGA .... . 
Cl ....... . 
co ....... . 

ITERATION 

10.0000 
1. 0000 
1. 0000 
1. 0000 
0.5000 
1. 0000 
0.0 

500.0000 

SSQ 
0 246022.36623 
1 128996.36620 
2 58793.65999 
3 30511.23505 
4 22294.31832 
5 10681.56125 
6 6515.38259 
7 4065.76046 
8 81.72203 
9 3.40572 

10 0.58235 
11 0.57551 
12 0.57547 

D ..... 
1.00000 
0.81180 
8.05817 
6.56908 

20.03290 
19.39181 
11.36916 
7.47247 
7.03156 
4.65404 
4.95646 
4.97379 
4.97406 

R ..... PULSE. BETA .. OMEGA. 
1.00000 1.00000 0.50000 1.00000 
1.63115 1.03430 0.16113 3.35233 
?.45991 1.71952 0.00106 6.80566 
2.33221 2.21464 0.21050 7.77231 
2.42207 2.03889 0.26845 8.38396 
2.32613 2. 15505 0.27720 5.79992 
2.39445 2.15037 0.45088 1.61625 
3.05962 2.50670 0.26818 2.42405 
3.02647 2.51254 0.30288 2.49950 
2.99762 2.49972 0.29603 2.51777 
2.99820 2.49870 0.29739 2.51109 
2.99812 2.49853 0.29749 2.51090 
2.99811 2.49853 0.29749 2.51088 

cr,. ...__. 



CORRELATION MATRIX 
--=====--==-==-=== 

1 2 3 4 5 
1 1.0000 
2 0.3155 1.0000 
3 0.2718 o.7586 1.0000 

-0.6260 -0.6191 1.0000 4 0.4293 
5 -0.6169 -0.2879 -0.0743 -0.3728 1.0000 

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99999404 

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS 
--------------==--==========--=-----------------

VARIABLE NAME VALUE S.E.COEFF. T-VALUE 
1 D ..... 4.97406 0.03742 132.92 
2 R ••••• 2.99811 0.00270 1111.47 
3 PULSE. 2.49853 0.00138 1806.39 
4 BETA .. 0.29749 0.00034 884.54 
5 OMEGA. 2.51088 0.00223 1124.95 

95% CONFIDENCE LIMITS 
LOWER UPPER 

4.89698 5.05113 
2.99256 3.00367 
2.49568 2.50138 
0.29680 0.29819 
2.50628 2.51548 

-----------------------ORDERED BY COMPUTER INPUT------------------------

NO 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

DISTANCE 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
40.0000 
40.0000 
40.0000 
40.0000 

TIME 
0.2000 
0.4000 
0.6000 
0.8000 
1. 0000 
1. 5000 
2.0000 
3.0000 
4.0000 
5.0000 
6.0000 
7.0000 
8.0000 

10.0000 
12.0000 
0.2000 
0.4000 
0.6000 
0.8000 

CONCENTRATION 
OBS FITTED 

0.0 0.0 
0.0 o.o 
0.0 0.0001 
0.0400 0.0441 
1.3600 1.4077 

49.9500 49.7093 
134.2500 134.4251 
206.4900 206.3964 
198.7600 198.7150 
105.2500 105.7654 

89.1200 89.0365 
77.6300 77.5696 
67.2500 67.2064 
49.7000 49.6825 
36.1200 36.1054 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

RESI­
DUAL 
o.o 
0.0 

-0.0001 
-0.0041 
-0.0477 
0.2407 

-o. 1751 
0.0936 
0.0450 

-0.5154 
0.0835 
0.0604 
0.0436 
0.0175 
0.0146 
0.0 
0.0 
0.0 
0.0 

a-
00 



20 40.0000 1.0000 0.0 o.o o.o 
21 40.0000 1.5000 o.o 0.0000 -0.0000 
22 40.0000 2,0000 0.0100 0.0164 -0.0064 
23 40.0000 3.0000 11.6400 11.8712 -0.2312 
24 40.0000 4.0000 56.5700 56.4797 0.0903 
25 40.0000 5.0000 90.5300 90.7646 -0.2346 
26 40.0000 6.0000 90,0900 89.9546 0.1354 
27 40.0000 7.0000 80.4400 80.4107 0.0293 
28 40.0000 8.0000 78.7500 78.5777 0. 1723 
29 40.0000 10.0000 73.3800 73.2438 0.1362 
30 40.0000 12.0000 65.0800 64.9753 0.1047 

---------------------------ORDERED BY RESIDUAL----------------------------
CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL 
6 20.0000 1,5000 49.9500 49.7093 0.2407 

28 40.0000 8.0000 78.7500 78.5777 0.1723 
29 40.0000 10.0000 73.3800 73.2438 0.1362 
26 40.0000 6.0000 90.0900 89.9546 0.1354 
30 40.0000 12.0000 65.0800 64.9753 0.1047 

8 20.0000 3.0000 206.4900 206.3964 0.0936 
24 40.0000 4.0000 56.5700 56.4797 0.0903 
11 20.0000 6.0000 89. 1200 89.0365 0.0835 
12 20.0000 7.0000 77.6300 77 .5696 0.0604 

9 20.0000 4.0000 198.7600 198.7150 0.0450 
13 20.0000 8.0000 67.2500 67.2064 0.0436 
27 40.0000 7.0000 80.4400 80.4107 0.0293 
14 20.0000 10.0000 49.7000 49.6825 0.0175 
15 20.0000 12.0000 36. 1200 36.1054 0.0146 

1 20.0000 0.2000 0.0 0.0 o.o 
2 20 .. 0000 0.4000 0.0 0.0 0.0 

16 40.0000 0.2000 0.0 0.0 o.o 
17 40.0000 0.4000 0.0 o.o 0.0 
18 40.0000 0.6000 0.0 0.0 0.0 
19 40.0000 0.8000 0.0 0.0 o.o 
20 40.0000 1.0000 o.o 0.0 0.0 
21 40.0000 1.5000 0.0 0.0000 -0.0000 

3 20.0000 0.6000 0.0 0.0001 -0.0001 
4 20.0000 0.8000 0.0400 0.0441 -0.0041 

22 40.0000 2.0000 0.0100 0.0164 -0.0064 
5 20.0000 1.0000 1.3600 1. 4077 -0.0477 
7 20.0000 2.0000 134.2500 134.4251 -0.1751 

23 40.0000 3.0000 11. 6400 11.8712 -0.2312 
25 40.0000 5.0000 90.5300 90.7646 -0.2346 a, 

10 20.0000 5.0000 105.2500 105.7654 -0.5154 
\0 



********************1************************************************************* 
* * * ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION * 
* NON-LINEAR LEAST-SQUARES ANALYSIS * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FOR PULSE INJECTION 
WITH FIRST- AND ZERO-ORDER PRODUCTION AND DECAY 
SOLUTION FOR FLUX CONCENTRATIONS 
REDUCED CONCENTRATION AND TIME DATA 

EX.3A: BROMIDE EFFLUENT FROM 'WORMHOLE' COLUMN 
(UNITS: METERS, DAYS, ARBITRARY MASS UNITS) 

* 
* 
* 
* 
* 
* 
* 
* 
* ********************************************************************************** 

INITIAL VALUES OF COEFFICIENTS 
====-=----=-=------=-=-=--=-=-

NAME 
V ••••••••• 
D ••••••••• 
R ••••••••• 
PULSE. ... . 
RXl ...... . 
RXO ...... . 
Cl •••••••. 
co ....... . 

ITERATION 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

INITIAL 
107.0000 

10.0000 
1.0000 
0.6500 
0.0 
0.0 
0.0 
1.0000 

SSQ 
4. 10659 
2.46778 
1.41558 
0.64858 
0.19115 
0.04893 
0.01575 
0.01076 
0.01048 
0.01048 
0.01048 

VALUE 

D ••••• 
10.00000 
37.23245 

123.82341 
400. 18590 

1229.76741 
2937.47280 
5485.46972 
7779.78289 
8660.86768 
8744.04483 
8745.07988 

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99683340 

___, 
0 



NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS 
-=--=============-=-----------------------------

VARIABLE 
1 

NAME 
D ••••• 

VALUE 
8745.07988 

S.E.COEFF. 
1786.53980 

95% CONFIDENCE LIMITS 
LOWER UPPER 

4885.38692 12604.77285 

-----------------------ORDERED BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL 
1 0. 1900 0.0300 0.8060 0.8449 -0.0389 
2 0. 1900 0. 1470 0.9420 0.9302 0.0118 
3 0. 1900 0.2720 0.9650 0.9490 0.0160 
4 0. 1900 0.4100 0.9600 0.9586 0.0014 
5 0. 1900 0.5580 0.9800 0.9647 0.0153 
6 0. 1900 0.6130 0.8820 0. 9_664 -0.0844 
7 0.1900 0.6620 0. 1850 0.2112 -0.0262 
8 0.1900 0.7980 0.0226 0.0402 -0.0176 
9 o. 1900 0.9490 0.0101 0.0218 -0.0117 

10 0. 1900 1.0930 0. 0077 0.0148 -0.0071 
11 0. 1900 1. 2440 0.0064 0.0109 -0.0045 
12 0. 1900 1.4090 0.0057 0.0083 -0.0026 
13 0. 1900 1.5780 0.0054 0.0066 -0.0012 
14 0.1900 1.7510 0.0050 0.0054 -0.0004 

---------------------------ORDERED BY RESIDUAL----------------------------
CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL 
3 0. 1900 0.2720 0.9650 0.9490 0.0160 
5 0. 1900 0.5580 0.9800 0.9647 0.0153 
2 0.1900 o. 1470 0.9420 0.9302 0.0118 
4 0.1900 0.4100 0.9600 0.9586 0.0014 

14 0.1900 1.7510 0.0050 0.0054 -0.0004 
13 0. 1900 1 .5780 0.0054 0.0066 -0.0012 
12 0.1900 1.4090 0.0057 0.0083 -0.0026 
11 o. 1900 1. 2440 0.0064 0.0109 -0.0045 
10 o. 1900 1.0930 0.0077 0.0148 -0.0071 

9 0. 1900 0.9490 0.0101 0.0218 -0.0117 
8 0. 1900 0.7980 0.0226 0.0402 -0.0176 
7 o. 1900 0.6620 0. 1850 0.2112 -0.0262 
1 0.1900 0.0300 0.8060 0.8449 -0.0389 
6 0. 1900 0.6130 0.8820 0.9664 -0.0844 

" .... 



********************************************************************************** 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION 
NON-LINEAR LEAST-SQUARES ANALYSIS 

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR 
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY 
SOLUTION FOR FLUX CONCENTRATIONS 
REDUCED CONCENTRATION AND TIME DATA 

EX.4A: BORON EFFLUENT FROM GLENDALE CLAY LOAM 
(UNITS: CENTIMETERS, DAYS, MICROGRAMS) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ********************************************************************************** 

INITIAL VALUES OF COEFFICIENTS 

NAME 
v ........ . 
D ........ . 
R ....... .. 
PULSE .... . 
BETA ..... . 
OMEGA .... . 
Cl ....... . 
co ....... . 

ITERATION 
0 
1 
2 
3 
4 
5 
6 

INITIAL VALUE 
38.5000 
2.0000 

10.0000 
6.4900 
0.2000 
0.2000 
0.0 

20.0000 

SSQ 
1.86497 
0.89540 
0.41722 
0.20896 
0.19442 
0.05591 
0.05290 

D ••••• 
2.00000 
5.55891 

15.45646 
33.01378 
48.25238 
60.59524 
48.80769 

R ••••• 
10.00000 

8.09839 
7.03675 
5.60759 
3.91843 
4.26294 
4.28093 

NO FURTHER DECREASE IN SSQ OBTAINED AFTER 50 TRIALS 

BETA .. 
0.20000 
0.24822 
0. 30592 
0.40860 
0.57399 
0.60434 
0.59715 

OMEGA. 
0.20000 
0.44224 
0.51867 
0.44036 
0.41148 
0.40417 
0.41627 

-..J 
N 



CORRELATION MATRIX 
================== 

1 2 3 4 
1 1.0000 
2 0.0834 1 .0000 
3 0.5889 -0.6561 1. 0000 
4 -0.7262 -0.3436 -0.4080 1.0000 

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.98139377 

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS 

95% CONFIDENCE LIMITS 
VARIABLE NAME VALUE S. E.COEFF. T-VALUE LOWER UPPER 

1 D ..... 48.80769 13.39505 3.64 21.27210 76.34327 
2 R ..... 4,28093 0.22611 18.93 3.81611 4.74574 
3 BETA .. 0,59715 0.03308 18.05 0.52914 0.66516 
4 OMEGA. 0.41627 0.09013 4.62 0.23099 0.60156 

-----------------------ORDERED BY COMPUTER INPUT------------------------
CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL 
1 30.0000 1. 8000 0.0150 0. 1035 -0.0885 
2 30.0000 1. 9500 0.0750 0.1558 -0.0808 
3 30.0000 2.1000 0.1700 0.2152 -0.0452 
4 30.0000 2.2500 0.2650 0.2779 -0.0129 
5 30.0000 2.4000 0.3400 0.3406 -0.0006 
6 30.0000 2.6000 0.4300 0.4195 0.0105 
7 30.0000 2.8500 0.5350 0.5053 0.0297 
8 30.0000 3.1500 0.6200 0.5862 0.0338 
9 30.0000 3.5000 0.6870 0.6536 0.0334 

10 30.0000 4.0000 0.7380 0.7115 0.0265 
11 30.0000 4.6000 0.7770 0.7574 0.0196 
12 30.0000 5.3000 0.8190 0.7927 0.0263 
13 30.0000 6.0000 0.8520 0.8198 0.0322 
14 30.0000 6.7000 0.8800 0.8427 0.0373 
15 30.0000 7.3000 0.8820 0.8599 0.0221 
16 30.0000 7.7500 0.8520 0.8644 -0.0124 
17 30.0000 8.0000 0.7760 0.8445 -0.0685 
18 30.0000 8.2500 0.6990 0.7922 -0.0932 
19 30.0000 8.5500 0.6210 0.6911 -0.0701 
20 30.0000 8.9000 0.5270 0.5524 -0.0254 

....., 
w 



21 30.0000 9.3000 0.4330 0.4121 0.0209 
22 30.0000 9.8000 0.3570 0.2934 0.0636 

___, 

23 30.0000 10.5000 0.2690 0.2121 0.0569 
-I>-

24 30.0000 11. 5000 o. 1860 0. 1584 0.0276 
25 30.0000 12.7000 0.1330 0.1238 0.0092 
26 30.0000 14.0000 0.0900 0.0964 -0.0064 
27 30.0000 15.5000 0.0540 0.0723 -0.0183 
28 30.0000 17.0000 0.0400 0.0541 -0.0141 
29 30.0000 18.5000 0.0290 0.0405 -0.0115 
30 30.0000 20.0000 0.0250 0.0303 -0.0053 

---------------------------ORDERED BY RESIDUAL----------------------------
CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL 
22 30.0000 9.8000 0.3570 0.2934 0.0636 
23 30.0000 10. 5000 0.2690 0.2121 0.0569 
14 30.0000 6.7000 0.8800 0.8427 0.0373 

8 30.0000 3. 1500 0.6200 0.5862 0.0338 
9 30.0000 3.5000 0.6870 0.6536 0.0334 

13 30.0000 6.0000 0.8520 0.8198 0.0322 
7 30.0000 2.8500 0.5350 0.5053 0.0297 

24 30.0000 11.5000 0.1860 0.1584 0.0276 
10 30.0000 4.0000 0.7380 0.7115 0.0265 
12 30.0000 5. 3000 0.8190 0.7927 0.0263 
15 30.0000 7. 3000 0.8820 0.8599 0.0221 
21 30.0000 9.3000 0.4330 0.4121 0.0209 
11 30.0000 4.6000 0. 7770 0.7574 0.0196 
6 30.0000 2.6000 0.4300 0.4195 0.0105 

25 30.0000 12.7000 0.1330 o. 1238 0.0092 
5 30.0000 2.4000 0.3400 0.3406 -0.0006 

30 30.0000 20.0000 0.0250 0.0303 -0.0053 
26 30.0000 14.0000 0.0900 0.0964 -0.0064 
29 30.0000 18.5000 0.0290 0.0405 -0.0115 
16 30.0000 7.7500 0.8520 0.8644 -0.0124 

4 30.0000 2.2500 0.2650 0.2779 -0.0129 
28 30.0000 17. 0000 0.0400 0.0541 -0.0141 
27 30.0000 15.5000 0.0540 0.0723 -0.0183 
20 30.0000 8.9000 0.5270 0.5524 -0.0254 

3 30.0000 2. 1000 o. 1700 0.2152 -0.0452 
17 30.0000 8.0000 0. 7760 0.8445 -0.0685 
19 30.0000 8.5500 0.6210 0.6911 -0.0701 

2 30.0000 1.9500 0.0750 0. 1558 -0.0808 
1 30.0000 1.8000 0.0150 o. 1035 -0.0885 

18 30.0000 8.2500 0.6990 0.7922 -0.0932 



********************************************************************************** 
* * * ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION * 
* NON-LINEAR LEAST-SQUARES ANALYSIS * 
* * * STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM ADSORPTION * 
* ZERO-ORDER PRODUCTION AND FIRST-ORDER DECAY FOR UNIFORM SOLUTE LOAD * 
* SOLUTION FOR RESIDENT CONCENTRATIONS * 
* * * EX.5B: HYPOTHETICAL REGIONAL TRANSPORT PROBLEM * 
* FIT TO EX.5A (UNITS: CENTIMETERS, DAYS, MICROGRAMS) * 
* * ********************************************************************************** 

INITIAL VALUES OF COEFFICIENTS 

NAME 
<V> ...... . 
DI SP ....•• 
R ....... .. 
SOLOAD ... . 
RX1 .•..... 
RXO ..•..•. 
SDLN ..... . 
Cl •.•••..• 
co ....... . 

ITERATION 

INITIAL VALUE 
10.0000 

1. 0000 
1. 0000 

20000.0000 
0.0 
0.0 
1. 0000 
0.0 

1000.0000 

SSQ <V> ... 
0 212138. 759151 10.00000 
1 41671.379895 18.41775 
2 5685.699634 27.95026 
3 290.163378 36. 19773 
4 14.092663 35.68894 
5 10,146888 32.36309 
6 9.219075 27.73219 
7 0.623445 25.04830 
8 0.002403 25.00682 
9 0.002053 24.99640 

10 0.002045 25.00137 
11 0.002045 25.00148 

DI SP .. R ..... SDLN .. 
1. 00000 1.00000 1.00000 
o. 18538 2.12304 0.99829 
0.47473 3.49626 1. 12868 
0.71330 4.58340 1.29284 
1.91076 4.90676 1.39359 
3.55284 4.95535 1.40809 
6.60219 5.00988 1. 40006 
9.65937 5.00271 1. 373117 

10.01930 4.99709 1.37003 
10.03234 4.99673 1. 36991 
10.02680 4.99668 1.36996 
10.02672 4.99668 1.36996 __, 

u, 



CORRELATION MATRIX 
------------------

1 2 3 4 
1 1.0000 
2 -0.9193 1. 0000 
3 -0.2474 -0.0124 1. 0000 
4 0.6063 -0.3364 -0.8575 1.0000 

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99999992 

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULlS 
=====-=-----------------------------. -~---------

95% CONFIDENCE LIMITS 
VARIABLE NAME VALUE S.E.COFFF. T-VALUE LOWER UPPER 

1 <V> ... 25.00148 0.01785 1400.87 24. 96lt80 25.03817 
2 DI SP .. 10.02672 0.01919 522.54 9.98727 10.06616 
3 R ..... 4.99668 (). 00087 5139.96 4.99489 4.99847 
4 SDLN .. 1.36996 0.00034 3981.22 1.36925 1.37067 

-----------------------ORDERED BY COMPUTER INPUf------------------------
CONCENTRATION RESI-

NO DISfANCE TIME OBS FITTED DUAL 
1 10.0000 1.0000 68.1/HJ() 68. 1516 -0.0116 
2 25.0000 1 .0000 15.2600 15.2561 0.0039 
3 50.0000 1. 0000 2.8400 2.8408 -0.0008 
4 75.0000 1. 0000 0.8700 0.8653 0.0047 
5 100.0000 1.0000 0.3500 0.3310 0.0190 
6 150.0000 1. 0000 0.0900 0.0800 0.0100 
7 200.0000 1. 0000 0.0300 0.0263 0.0037 
8 300.0000 1.0000 0.0100 0.0 0.0100 
9 400.0000 1.0000 0.0 0.0 0.0 

10 500.0000 1.0000 0.0 o.o 0.0 
11 10.0000 5.0000 94.9400 94.9317 0.0083 
12 25.0000 5.0000 41. 8900 41.8875 0.0025 
13 50.0000 5.0000 14.9100 14.9128 -0.0028 
14 75.0000 5.0000 6.8500 6.8512 -0.0012 
15 100.0000 5.0000 3.6700 3.6538 0.0162 
16 150.0000 5.0000 1.3900 1.3846 0. 005/t 
17 200.0000 5.0000 0.6500 0.6486 0.0014 
18 300.0000 5.0000 0.2100 0.2016 0.0084 
19 400.0000 5.0000 0.0900 0.08111 0.0059 

...., 
°' 



20 500.0000 5.0000 0.0400 0.0410 -0.0010 
21 10.0000 10.0000 79.3800 79.3887 -0.0087 
22 25.0000 10.0000 45.4900 45.4854 0.0046 
23 50.0000 10.0000 20.9400 20.9485 -0.0085 
24 75.0000 10.0000 11.31100 11.3201 0.0199 
25 100.0000 10.0000 6.8600 6.8567 0.0033 
26 150.0000 10.0000 3.0700 3.0740 -0.0040 
27 200.0000 10.0000 1. 6300 1. 6167 0.0133 
28 300.0000 10.0000 0.6200 0.6138 0.0062 
29 400.0000 10.0000 0.2900 0.2919 -0.0019 
30 500.0000 10.0000 o. 1600 0. 1590 0.0010 

---------------------------ORDERED BY RESIDUAL----------------------------
CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL 
24 75.0000 10.0000 11.3400 11.3201 0.0199 

5 100.0000 1. 0000 0.3500 0.3310 0.0190 
15 100.0000 5.0000 3.6700 3.6538 0.0162 
27 200.0000 10.0000 1.6300 1.6167 0.0133 

8 300.0000 1. 0000 0.0100 0.0 0.0100 
6 150.0000 1. 0000 0.0900 0.0800 0.0100 

18 300.0000 5.0000 0.2100 0.2016 0.0084 
11 10.0000 5.0000 94.9400 94. 9317 0.0083 
28 300.0000 10.0000 0.6200 0.6138 0.0062 
19 400.0000 5.0000 0.0900 0.0841 0.0059 
16 150.0000 5.0000 1.3900 1.3846 0.0054 

4 75.0000 1. 0000 0.8700 0.8653 0.0047 
22 25.0000 10.0000 45.4900 45.4854 0.0046 

2 25.0000 1. 0000 15.2600 15.2561 0.0039 
7 200.0000 1. 0000 0.0300 0.0263 0.0037 

25 100.0000 10.0000 6.8600 6.8567 0.0033 
12 25.0000 5.0000 111. 8900 41. 8875 0.0025 
17 200.0000 5.0000 0.6500 0.6486 0.0014 
30 500.0000 10.0000 0. 1600 0.1590 0.0010 

9 1100. 0000 1.0000 0.0 0.0 0.0 
10 500.0000 1. 0000 0.0 0.0 o.o 

3 50.0000 1 .0000 2. 81100 2.8408 -0.0008 
20 500.0000 5.0000 0.0400 0.0410 -0.0010 
111 75.0000 5.0000 6.8500 6.8512 -0.0012 
29 400.0000 10.0000 0.2900 0.2919 -0.0019 
13 50.0000 5.0000 14.9100 14.9128 -0.0028 
26 150.0000 10.0000 3.0700 3. 01110 -0.0040 
23 50.0000 10.0000 20.9400 20.9485 -0.0085 
21 10.0000 10.0000 79.3800 79.3887 -0.0087 

1 10.0000 1.0000 68. 1400 68. 1516 -0.0116 " " 



********************************************************************************** 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION 
NON-LINEAR LEAST-SQUARES ANALYSIS 

STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM ADSORPTION 
ZERO-ORDER PRODUCTION AND FIRST-ORDER DECAY FOR UNIFORM PULSE INPUT 
SOLUTION FOR RESIDENT CONCENTRATIONS 
REDUCED CONCENTRATION DATA 

EX.6A: FIELD-SCALE BROMIDE MOVEMENT (JURY lT AL.,1982) 
(UNITS: MILIMETERS, DAYS, ARBITRARY MASS--REDUCED C) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************************** 

INITIAL VALUES OF COEFFICIENTS 
==========--------------------

NAME INITIAL VALUE 
<V>* ...... 25.0000 
DISP ...... 100.0000 
R ......... l. 0000 
PULSE ..... 1.6900 
RXl ....... 0.0 
RXO ....... 0.0 
SDLN ...... 1.0000 
Cl ........ 0.0 
co ........ 1.0000 

ITERATION SSQ <V>* .. DI SP .. SDLN .. 
0 0.001957 25.00000 100.00000 l. 00000 
l 0.001062 27.41737 38.93184 0.91028 
2 0.000620 25.72053 77.91321 0.60558 
3 0.000545 28.47699 11.22351 0.76138 
4 0.000518 29.69033 9.38482 0.76866 
5 0.000518 30.44372 o. 38794 0.80010 
6 0.000518 30.44455 0.38133 0.80012 
7 0.000518 30.45577 0.86023 0.79995 
8 0.000518 30.45479 0.98181 0.79984 
9 0.000518 30.45601 0.97338 0.79984 

10 0.000518 30.45886 1.00424 0.79974 
11 0.000518 30.46018 0.96600 0.79977 
12 0.000518 30.46087 0.99540 0.79974 
13 0.000518 30.46136 0.98188 0.79976 
14 0.000518 30.46136 0.98188 0.79976 

..... 
00 



CORRELATION MATRIX 
--=---------------

1 
1 1. 0000 
2 -0.9956 
3 0.9954 

2 

1.0000 
-0.9977 

3 

1. 0000 

RSQUARE FOR REGRESSION Of OBSERVED VS PREDICTED=0.98518064 

NON-LINEAR LEAST SQUARES ANALYSIS, fl~AL RESULTS 
====-==-==-=--==--------------------------------

VARIABLE 
1 
2 
3 

NAME 
<V>* .• 
DI SP .. 
SDLN .. 

VALUE 
30.46136 
0.98188 
0.79976 

-----------------------ORDERED BY 

NO 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

DISTANCE 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300,0000 
300.0000 
300.0000 
300.0000 

TIME 
5.0000 

10.0000 
15.0000 
20.0000 
25.0000 
30.0000 
35.0000 
40.0000 
45.0000 
50.0000 

S.E.COEFF. 
21.01538 

227.53307 
0.94273 

T-VALUE 
1. 45 
0.00 
0.85 

95% CONFID£NCE 
LOWER 
-19.22989 

-537.02429 
-1.42936 

COMPUTER INPUT------------------------
CONCENTRATION RESI-

OBS FITTED DUAL 
0.0620 0.0676 -0.0056 
0.0760 0.0812 -0.0052 
0.0590 0.0592 -0.0002 
0.0380 0.0400 -0.0020 
0.0140 0.0268 -0.0128 
0.0070 0.0183 -0.0113 
0.0040 0.0127 -0.0087 
0.0030 0.0090 -0.0060 
0.0010 0.0065 -0.0055 
0.0 0.0047 -0.0047 

LIMtTS 
UPPER 

80. 15261 
538.98805 

3.02887 

...... 
'D 



---------------------------ORDERED 

NO 
3 
4 

10 
2 
9 
l 
8 
7 
6 
5 

DISTANCE 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 
300.0000 

TIME 
15.0000 
20.0000 
50.0000 
10.0000 
45.0000 

5.0000 
40.0000 
35.0000 
30.0000 
25.0000 

BY RESIDUAL----------------------------
CONCENTRATION RESl-

08S FITTED DUAL 
0.0590 0.0592 -0.0002 
0.0380 0.0400 -0.0020 
o.o 0.0047 -0.0047 
0.0760 0.0812 -0.0052 
0.0010 0.0065 -0.0055 
0.0620 0.0676 -0.0056 
0.0030 0.0090 -0.0060 
0.0040 0.0127 -0.0087 
0.0070 0.0183 -0.0113 
0.0140 0.0268 -0.0128 

00 
0 



14. APPENDIX E. 

Listing of program CXTFIT for the analysis 
of transport parameters from measured 
resident or flux concentration data 

81 
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C 
C 
C 
C 
C 
C 
C 
C 

C 

****************************************************************** 
* * * CXTFIT: NON-LINEAR LEAST-SQUARES ANALYSIS OF C(X;T) DATA * 
* FOR ONE-DIMENSIONAL DETERMINISTIC OR STOCHASTIC SOLUTE * 
* TRANSPORT WITH DETECTION IN RESIDENT OR FLUX MODES * 
* * ****************************************************************** 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION C(90),F(90),R(90),DELZ(90,7),8(14),E(7),TH(14),P(7), 

1PHl(7),Q(7),LSORT(90),TB(14),A(7,7),81(14),TITLE(20),D(7,7) 
COMMON/MODAT1/X(90),T(90), INDEX(7),NOB,NREDU,NVAR 
COMMON/MODAT2/Cl,CO,DM1,XL,DM2,DM3,DM4,DM5,0M6,DM7,DM8,DM9,DM10, 

1DM11,DM12,MODE,MODT 
DATA STOPCR/0.0005/ 
DATA MAXTRY/50/ 

C ----- READ NUMBER OF CASES----­
READ(5,1006) NC 

C 
C 

DO 150 NCASE=l,NC 

C ----- READ INPUT PARAMETERS 

C 

READ(5,1006) MODE,NDATA,NREDU,MIT,NOB,NSKIP,NPRNT 
IF(NSKIP.NE.O) GO TO 2 
WRITE(6,1000) 
IF(MIT.NE.O) WRITE(6,1035) 
WRITE(6,1036) 
M=(MODE-1)/2 
IF(M.EQ.O) WRITE(6,1021) 
IF(M.EQ.1) WRITE(6,1022) 
IF(M.EQ.2) WRITE(6,1023) 
IF(M.EQ.3) WRITE(6,1039) 
N=MODE-2*M 
IF(N.EQ.1) WRITE(6,1024) 
IF(N.EQ.2) WRITE(6,1025) 
IF(NREDU.EQ.1) WRITE(6,1037) 
IF(NREDU.EQ.2) WRITE(6,1040) 
WRITE(6,1036) 

2 NVAR=6 
IF(MODE.GE.5) NVAR=7 
NUl=NVAR+l 
NU2=2*NVAR 
DO 4 1=1,2 
READ(5,1001) TITLE 

4 IF(NSKIP.EQ.O) WRITE(6,1002) TITLE 
IF(NSKIP.EQ.O) WRITE(6,1003) 

C ----- READ COEFFICIENTS NAMES----­
READ(5, 1004) (Bl (I), 1=1,NU2) 

C 
C ----- READ INITIAL ESTIMATES----­

READ(5, 1005) (B( I), l=NU1,NU2) 
C 
C ----- READ INDICES-----

READ( 5, 1006) (INDEX( I). 1=1, NVAR) 
IF(NSKIP.NE.O) GO TO 8 

WR I TE( 6, 1007) 
DO 6 1=1,NVAR 
J=2*1-1 

6 WRITE(6,1008) Bl(J),Bl(J+l),B( l+NVAR) 
8 CONTINUE 



C 
C ----- READ INITIAL AND INLET CONCENTRATIONS 

READ(5,1005) Cl,CO 

C 

lf(NSKIP.EQ.O) WRITE(6,1026) Cl,CO 
lf(NDATA.NE.1) GO TO 11 

C ----- READ AND WRITE EXPERIMENTAL DATA 
XL=O.O 
DO 1 0 I = 1 , NOB 
READ(5,1005) C(l),X(l),T(I) 

10 XL=DMAX1(XL,X( I)) 
11 lf(NREDU.EQ.2) INDEX(1)=0 

lf(NSKIP.NE.O) GO TO 150 
lf(MIT.EQ.O) GO TO 18 
lf(NPRNT.NE.1) GO TO 15 
WRITE(6,1009) 
DO 14 1=1,NOB 

14 WRITE(6,1010) l,C(l),X(l),T(I) 
C 
C -----CHECK FOR INPUT ERROR-----

C 

15 NZC=O 
NFC=O 
DO 17 1=1,NVAR 
lf((B(l+NVAR).EQ.0.0).AND.(I.LE.3)) GO TO 129 
lf((B(l+NVAR).EQ.0.0).AND.(INDEX(l).EQ.1)) GO TO 130 
If(( 1.EQ.4).0R.(MODE.GE.5)) GO TO 17 
If( INDEX( I ) . EQ. 1) NFC=NFC+1 
lf(B( l+NVAR).NE.0.0) NZC=NZC+1 

17 CONTINUE 
lf(MODE.GE.5) GO TO 18 
lf(NZC.LE.NFC) GO TO 120 

C ----- REARRANGE VARIABLE ARRAYS-----

C 

18 NP=O 
DO 20 l=NU1,NU2 
TB( I )=B( I) 
If( INDEX( 1-NVAR).EQ.O) GO TO 20 
NP=NP+l 
K=2*NP-1 
J=2*( I-NVAR)-1 
Bl(K)=Bl(J) 
Bl ( K+1 )=Bl (J+1) 
B(NP)=B( I) 
TB(NP)=B( I) 
TH( NP)=B( NP) 

20 TH( I )=B( I ) 

C ----------GA=0.02 
NIT=O 
NP2=2*NP 
CALL MODEL(TH,F) 
IF (MIT.EQ.O) GO TO 140 
SSQ=O. 
DO 32 1=1,NOB 
R( I )=C( I )-F( I) 

32 SSQ=SSQ+R( I )*R( I) 
WRITE( 6, 1011) (BI (J), Bl (J+1) ,J=l, NP2,2) 
WR I TE ( 6, 1012 ) N I T, SSQ, ( B ( I ), I= 1 , NP) 

0.) 
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C 
C ----- BEGIN ITERATION-----

C 

34 NIT=NIT+l 
NTRIAL=O 
GA=O. l*GA 
DO 38 J=l,NP 
TEMP=TH(J) 
TH(J)=l.Ol*TH(J) 
Q(J)=O. 
CALL MODEL(TH,DELZ(l,J)) 
DO 36 I=1,NOB 
DELZ( I ,J )=DELZ( I ,J )-F( I) 

36 Q(J)=Q(J)+DELZ(l,J)*R(I) 
Q(J)=lOO.*Q(J)/TH(J) 

C ----- Q=XT*R (STEEPEST DESCENT) 

C 

38 TH(J)=TEMP 
DO 44 I=1,NP 
DO 42 J=l, I 
SUM=O. 
DO 40 K=l,NOB 

40 SUM=SUM+DELZ( K, I )*DELZ( K,J) 
D( I, J )=10000. *SUM/ ( TH( I )*TH( J)) 

42 D(J,l)=D(l,J) 
E( I )=DSQRT(D( I, I)) 

44 IF(E(l).EQ.O.) E(l)=l.E-30 
50 DO 52 I=1,NP 

DO 52 J=l,NP 
52 A(l,J)=D(l,J)/(E(l)*E(J)) 

C ----- A IS THE SCALED MOMENT MATRIX----­
DO 54 I=1,NP 

C 

P( I )=Q( I )/E( I) 
PH I ( I )=P( I) 

54 A( I, I )=A( I, I )+GA 
CALL MATINV(A,NP,P) 

C ----- P/E IS THE CORRECTION VECTOR----­
STEP=l.O 

56 DO 58 I=1,NP 
58 TB( I )=P( I )*STEP/E( I )+TH( I) 

DO 62 I=1,NP 
IF( TH( I )*TB( I) )66,66,62 

62 CONTINUE 
SUMB=0.0 
CALL MODEL(TB,F) 
DO 611 I~ 1 , NOB 
R( I )=C( I )-f( I) 

64 SlJMB=SUMB+R( I )*R( I) 
66 SUMl=O.O 

SUM2=0.0 
SUM3=0.0 
DO 68 l=l,NP 
SUMl=SlJMl+P( I )*PHI (I) 
SUM2=SUM2+P( I )*P( I) 

68 SUM3=SUM3+PHI( I )*PHI( I) 
ARG=SUM1/DSQRT(SUM2*SUM3) 
ARGl=O.O 
IF(NP.GT.1) ARGl=DSQRT(l.-ARG*ARG) 
ANGLE=57.29578*DATAN2(ARG1,ARG) 



C 
C ----------

C 

DO 72 1=1,NP 
IF( TH( I )*TB( I) )74, 74, 72 

72 CONTINUE 
NTR I AL=NTR I AL +1 
IF(NTRIAL.GT.MAXTRY) GO TO 95 
IF(SUMB/SSQ-1.0) 80,80,74 

74 IF(ANGLE-30.0)76,76,78 
76 STEP=0.5*STEP 

GO TO 56 
78 GA=10.*GA 

GO TO 50 

C ----- PRINT COEFFICIENTS AFTER EACH ITERATION-----

C 

80 CONTINUE 
DO 82 1=1,NP 

82 TH( I )=TB( I ) 
WR I TE ( 6, 1 01 2 ) N I T, SUMB, ( TH ( I ), I = 1 , NP ) 
DO 86 1=1,NP 
IF( DABS( P( I )*STEP/E( I))/( 1. OD-20+DABS( TH( I )) )-STOPCR) 86, 86, 94 

86 CONTINUE 
GO TO 96 

94 SSQ=SUMB 
IF(NIT.LT.MIT) GO TO 34 
IF(NIT.EQ.MIT) WRITE(6,1034) MIT 
GO TO 96 

95 WRITE(6,1038) MAXTRY 

C ----- END OF ITERATION LOOP-----
96 CONTINUE 

CALL MATINV(D,NP,P) 
C 
C ----- WRITE CORRELATION MATRIX 

DO 98 1=1,NP 
E( I )=DSQRT( D( I, I)) 

98 IF(E(l).EQ.O.) E(1)=1.E-30 
IF(NP.EQ.1) GO TO 104 
WRITE(6,1013) ( I, 1=1,NP) 
DO 102 1=1, NP 
DO 100 J=l, I 

100 A(J, I )=D(J, I )/(E( I )*E(J)) 
102 WRITE(6,1014) l,(A(J,I ),J=l,I) 
104 SUMC=O.O 

SUMF=O.O 
SUMC2=0.0 
SUMF2=0.0 
SUMCF=O.O 
DO 106 1=1,NOB 
SUMC=SUMC+C( I ) 
SUMF=SUMF+F( I ) 
SUMC2=SUMC2+C( l)*C( I) 
SUMF2=SUMF2+F( l)*F( I) 

106 SUMCF=SUMCF+C( l)*F( I) 
RSQ=(SUMCF-SUMC*SUMF/NOB)**2/((SUMC2-SUMC*SUMC/NOB)*(SUMF2-SUMF* 

1SUMF/NOB)) 
WRITE(6,1041) RSQ 
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C 
C ----- CALCULATE 95% CONFIDENCE INTERVAL----­

Z=1./FLOAT(NOB-NP) 

C 

SDEV=DSQRT(Z*SUMB) 
TVAR=1.96+Z*(2.3779+Z*(2.7135+Z*(3.187936+2.466666*Z**2))) 
WRITE(6,1015) 
DO 108 I= 1, NP 
SECOEF=E( I )*SDEV 
TVALUE=TH( I )/SECOEF 
TSEC=TVAR*SECOEF 
TMCOE=TH( I )-TSEC 
TPCOE=TH( I )+TSEC 
J=2*1-1 
I F(NP. EQ.1) 

1WR I TE( 6, 1043) I, Bl (J), BI (J+1), TH( I), SECOEF, TMCOE, TPCOE 
I F (NP. GT. 1 ) 

1WR I TE( 6, 1016) I, BI (J), Bl (J+1), TH( I), SECOEF, TVALUE, TMCOE, TPCOE 
108 CONTINUE 

C ----- PREPARE FINAL OUTPUT-----

C 

110 LSORT( 1 )=1 
DO 116 J=2,NOB 
TEMP=R( J) 
K=J-1 
DO 111 L= 1, K 
LL=LSORT(L) 
IF( TEMP-R( LL)) 112,112,111 

111 CONTINUE 
LSORT(J)=J 
GO TO 116 

112 KK=J 
113 KK=KK-1 

LSORT(KK+l)=LSORT(KK) 
IF(KK-L) 115,115,113 

115 LSORT( L)=J 
116 CONTINUE 

WR I TE ( 6, 1 017 ) 
DO 117 I= 1 , NOB 

117 WRITE(6,1018) l,X(l),T(l),C(l),F(l),R(I) 
WRITE(6,1019) 
DO 118 I= 1 , NOB 
J=LSORT ( NOB+1- I ) 

118 WR I TE ( 6, 1018 ) J, X ( J ), T ( J ), C ( J ) , F ( J ) , R ( J ) 
GO TO 150 

120 WRITE(6,1028) 
DO 125 1=1,NVAR 
J=2*1-1 
IF( 1.EQ.4) GO TO 125 
IF ( ( INDEX( I ) • EQ. 1 ) . AND. ( 8( I +6). NE. 0. 0) ) WR I TE( 6, 1029) 81 ( J), BI ( J+1 ) 

125 CONTINUE 
GO TO 150 

129 WRITE(6,1032) 
GO TO 150 

130 WRITE(6,1031) 
GO TO 150 

140 WRITE(6,1030) 
DO 145 1=1,NOB 

145 WRITE(fi,1033)1,X(l),T(l),F(I) 
150 CONTINUE 

C ----- END OF PROBLEM-----
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999 FORMAT(2Fl0.4, 15) 
1000 FORMAT(lHl,lOX,82(1H*)/11X,1H*,80X,lH*/11X,1H*,10X, 'ONE-DIMENSIONA 

1L CONVECTION-DISPERSION EQ. SOLUTION',20X,1H*) 
1001 FORMAT(20A4) 
1002 FORMAT(11X,1H*,20A4,1H*) 
1003 FORMAT(llX,1H*,80X,lH*/11X,82(1H*)) 
1004 FORMAT(7(4X,A4,A2)) 
1005 FORMAT(7Fl0.0) 
1006 FORMAT(7110) 
1007 FORMAT(//11X,'INITIAL VALUES OF COEFFICIENTS'/11X,30(1H=)/12X, 

l'NAME' ,11X, 1 INITIAL VALUE') 
1008 FORMAT(11X,A4 A2,4(1H. ),F12.4) 
1009 FORMAT(//11X, 1oBSERVED DATA',/11X,13(1H=)/11X,'OBS. NO. ',5X,'CONCE 

1NTRATION',6X,'DISTANCt',9X,'TIME') 
1010 FORMAT(11X, 15,6X,F12.4,4X,F12.4,4X,F12.4) 
1011 FORMAT(//11X,' ITERATION' ,6X, 'SSQ' ,4X,5(7X,A4,A2)) 
1012 FORMAT(11X, 15,3X,F13.5,2X,5(F13.5J/ 
1013 FORMAT(///, 11X, 'CORRE LAT I ON MATRIX /11 X, 18( 1 H= )/14X, 10( 4X, 12, 5X)) 
1014 FORMAT(l1X,13,10(2X,F7.4,2X)) 
1015 FORMAT(1H1,10X, 'NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS' 

1/11X,48(1H=)//72X,'95% CONFIDENCE LIMITS'/11X,'VARIABLE'
1

4X, 'NAME' 
2,8X, 'VALUE',8X,'S.E.COEFF. ',3X, 'T-VALUE',5X, 'LOWER' ,lOX, UPPER') 

1016 FORMAT(14X, 12,6X,A4,A2,1X,Fl3.5,3X,F13.5,2X,F8.2,1X,F13.5, 
12X, F13.5) 

1017 FORMAT(//11X,23(1H-), 'ORDERED BY COMPUTER INPUT',24(1H-)/ 
150X, 'CONCENTRATION',12X, 1 RESl-'/11X, 1 N0',4X,'DISTANCE' ,9X,'TIME', 
210X,'OBS',9X, 1 FITTED',9X,'DUAL') 

1018 FORMAT( lOX, 12, 1X, F12. 4, 4( 2X, Fl 2. 4)) 
1019 FORMAT(//11X,27(1H-),'ORDERED BY RESIDUAL',28(1H-)/ 

150X, 'CONCENTRATION',12X,'RESl-'/11X, 'NO' ,4X, 1 DISTANCE' ,9X,'TIME', 
210X, 'OBS',9X,'FITTED' ,9X, 'DUAL') 

1020 FORMAT(///11X,'END OF PROBLEM 1 /11X,14(1H=)) 
1021 FORMAT(11X,1H*,10X,'DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FO 

1R PULSE INJECTION',7X,1H*/11X,1H*,10X, 1 WITH FIRST- AND ZERO-ORDER 
2PRODUCTION AND DECAY 1 ,23X,1H*) 

1022 FORMAT(11X,1H*, 10X,'DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRI 
1UM MODEL FOR ',8X,1H*/11X,1H*,10X, 'PULSE-TYPE INJECTION WITH NO 
2 PRODUCTION OR DECAY' ,22X,1H*) 

1023 FORMAT(11X,1H*,10X,'STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM AD 
1SORPTION',16X,1H*/11X,1H*,10X,'ZERO-ORDER PRODUCTION AND FIRST-ORD 
2ER DECAY FOR UNIFORM PULSE INPUT',3X,1H*) 

1024 FORMAT(11X,1H*,10X, 1 SOLUTION FOR RESIDENT CONCENTRATIONS' ,34X,1H*) 
1025 FORMAT(11X,1H*,10X,'SOLUTION FOR FLUX CONCENTRATIONS',38X,1H*) 
1026 FORMAT(11X,'Cl',8(1H.),F12.4/11X,'C0',8(1H.),F12.4) 
1028 FORMAT(//11X,' INPUT ERROR-- TOO MANY UNKNOWNS! 1 /llX, 'ONE OF THE F 

10LLOWING COEFFICIENTS MUST BE FIXED:') 
1029 FORMAT(60X,A4,A2) 
1030 FORMATl//11X,9l1H-),'RESULTS FOR INITIAL COEFFICIENT VALUES',9(1H-

1)/11X, NO' ,BX, DISTANCE' ,BX, 'TIME',7X,'CONCENTRATION') 
1031 FORMAT(//11X,' INPUT ERROR: NONZERO INITIAL VALUES OF VARIABLE COEF 

1FICIENTS MUST BE SPECIFIED!'/11Xl 'FOR REACTION CONSTANTS BE SURES 
21GN OF CQEFFICIENT IS CORRECT AS /11X,'FITTING PROCEDURE WILL NOT 
3CHANGE SIGNS'/ 

1032 FORMAT(//11X, INPUT ERROR: V,D AND R MUST BE GREATER THAN ZERO!') 
1033 fORMAT(11X, 12,3(3X,f12.4)) 
1034 FORMAT(/11X, 'CONVERGENCE CRITERIA NOT MET IN', 13,' ITERATIONS') 
1035 FORMAT(11X,1H*·,1ox,'NON-LINEAR LEAST-SQUARES ANALYSIS',37X,1H*) 
1036 FORMAT(11X,1H*,80X,1H*) 
1037 FORMAT(11X,1H*,10X,'REDUCED CONCENTRATION DATA',44X,1H*/ 
1038 FORMAT(/11X, 'NO FURTHER DECREASE IN SSQ OBTAINED AFTER , 12,' TRIA 

1 LS') 
1039 FORMAT(11X,1H*,10X,'STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM AD 

1SORPTION' ,16X,1H*/11X,1H*,10X,'ZERO-ORDER PRODUCTION AND FIRST-ORD 
2ER DECAY FOR UNIFORM SOLUTE LOAD',3X,1H*) 

1040 FORMAT(11X,1H*,10X, 1 REDUCED CONCENTRATION AND TIME DATA' ,35X,1H*) 
1041 FORMAT(/11X,'RSQUARE FOR REGRESSION Of OBSERVED VS PREDICTED=', 

1f10.8/) 
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C 

C 

1042 FORMAT(1H1,10X,'NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS' 
1/11X148(1H=)//64X,'95% CONFIDENCE LIMITS 1 /11X,'VARIABLE',4X, 'NAME' 
2,8X, VALUE',8X,'S.E.COEFF.',7X,'LOWER',10X,'UPPER') 

1043 FORMAT(14X,12,6X,A4,A2,1X,F13.5,3X,F13.5,1X,F13.5,2X,F13.5) 
STOP 
END 

SUBROUTINE MATINV(A,NP,B) 

C PURPOSE: PERFORM MATRIX INVERSION FOR PARAMETER ESTIMATION 
C 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION A(7, 7),B( 14), INDEX(7,2) 
DO 2 J=1, 7 

2 INOEX(J,1)=0 
l=U 

4 AMAX=-1. 0 
00 10 •J=1, NP 
IF(INDEX(J,1)) 10,6,10 

6 DO 1 0 K= 1 , NP 
IF(INDEX(K,1)) 10,8,10 

8 P=OABS(A(J,K)) 
IF(P.LE.AMAX) GO TO 10 
IR=J 
IC=K 
AMAX=P 

10 CONTINUE 
IF(AMAX) 30,30,14 

14 INOEX(IC,l)=IR 
IF( IR. EQ. IC) GO TO 18 
DO 16 L=l,NP 
P=A(IR,L) 
A( IR,L)=A( IC,L) 

16 A( IC,L)=P 
P=B( IR) 
B( IR)=B( IC) 
B( IC)=P 
l=l+l 
INDEX( l,2)=1C 

18 P=l./A(IC,IC) 
A( IC, IC)=1.0 
DO 20 L=l, NP 

20 A( IC,L)=A( IC,L)*P 
8( IC)=B( IC)*P 
DO 24 K=l,NP 
IF(K.EQ.IC) GO TO 24 
P=A(K,IC) 
A(K, IC)=O.O 
DO 22 L=l,NP 

22 A(K,L)=A(K,L)-A( IC,L)*P 
B( K)=B( K)-B( IC)*P 

24 CONTINUE 
GO TO 4 

26 IC=INDEX( 1,2) 
IR=INDEX( IC, l) 
DO 28 K=l,NP 
P=A(K,IR) 
A(K, IR)=A(K, IC) 

28 A( K, IC)=P 
1=1-1 

30 IF(I) 26,32,26 
32 RETURN 

END 
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C 
SUBROUTINE MODEL(BN,CXT) 

C 
C PURPOSE: ASSIGN COEFFICIENTS AND ROUTE EXECUTION FOR MODELS 
C 

IMPLICIT REAL*B(A-H,0-Z) 
DIMENSION BN(14),CXT(90) 
COMMON/MODAT1/X(90),T(90), INDEX(7),NOB,NREDU,NVAR 
COMMON/MODAT2/Cl,CO,SOLOAD,XL,F1,F2,F3,F4,F5,R,VLNM,SDLN,DISP,XJ, 

lTJ,MODE,MODT 
EXTERNAL CAVG 

C 
C ----UPDATE COEFFICIENT ARRAY---­

K=O 

C 

NUl=NVAR+l 
NU2=NVAR*2 
DO 2 l=NU1,NU2 
IF( INDEX( 1-NVAR).EQ.O) GO TO 2 
K=K+l 
BN( I )=BN( K) 

2 CONTINUE 

C ----- ASSIGN PARAMETERS ANO CHANGE FROM REDUCED TO ACTUAL TIMES 
V=BN(NUl) 

C 

R-=BN(NVAR+3) 
REDT=l .O 
lf(NREDU.NE.2) GO TO 8 
REDT=XL/V 
DO 4 1=1,NOB 

4 T( I )=T( I )*REDT 
8 IF(MODE.LE.6) F3=REDT*BN(NVAR+4) 

IF(MODE.GE.5) GO TO 150 
IF(MOOE.GE.3) GO TO 100 
Fl=V/R 
F2=BN(8)/R 
FIJ=BN( 11 )/R 
F5=BN(12)/R 

C ----SOLVE FOR MODELS 1 AND 2 

C 

50 00 75 J=1,NOB 
CALL MOD12(CXT(J),X(J),T(J)) 

75 CONTINUE 
GO TO 350 

C ----SOLVE FOR MODELS 3 AND 4 

C 

100 Fl=V 
F2=V*XL/BN(8) 
f4=0MIN1(BN(11),0.9999DOO)*R 
f5=BN( 12) 
DO 125 J=l,NOB 
CALL M0034(CXT(J),X(J),T(J)) 

125 CONTINUE 
GO TO 350 

C ----SOLVE FOR MODELS 5 THRU 8 
150 F4=BN(12)/R 

F5=BN( 13 )/R 
SDLN=BN(14) 
VLNM=DLOG(V)-0.5*SDLN*SDLN 
DISP=BN(9) 
IF(MODE.GE.7) SOLOAD=BN(11)/CO 
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C 

C 

VMIN1=DEXP(VLNM-3.9*SDLN) 
VMAX1=DEXP(VLNM+3.9*SDLN) 
CMIN=DABS(CO-CI )*1.D-06 
MODT=MODE 
IF((MODT.EQ.5).0R.(MODT.EQ.7)) MODE=1 
lf((MODT.EQ.6).0R.(MODT.EQ.8)) MODE=2 
DO 175 J=1, NOB 
XJ=X(J) 
TJ=T(,J) 
PL=DMAX1(XJ/DISP,1.D-10) 
VMIN=DMAX1(VMIN1,DMIN1(0.14*DLOG(PL)*XJ/TJ-.05,0.9*XJ/TJ)*R) 
CALL LIMIT(VMIN,VMAX,VMAX1,CMIN) 
CALL ROMB(CAVG,CXT(J),VMIN,VMAX) 
lf(MODE.EQ.2) CXT(J)=CXT(J)/V 

175 CONTINUE 
MODE=MODT 

350 CONTINUE 
lf(NREDU.EQ.O) GO TO 360 
DO 355 1=1,NOB 
T( I JccT( I )/REDT 

355 CXf( I )=(CXT( I )-Cl )/(CO-Cl) 
360 CONTINUE 

RETURN 
END 

SUBROUTINE MOD12(CXT,X,TIME) 

C PURPOSE: TO CALCULATE C(X,T) FOR MODE=1 
C 

C 

IMPLICIT REAL*8 (A-H,0-Z) 
COMMON/MODAT2/Cl,CO,DM1,XL,VR,DR,TO,RX1R,RXOR,R,DM2,DM3,DM4,DM5, 

1DM6,MODE,MDMY 
lf(RX1R.NE.O.O) GO TO 50 

C ------CALCULATE C(X,T) FOR RX1R=O 
DO 20 M=1,2 
A=O.O 
B=O.O 
T=T I ME+( 1-M )*TO 
IF(T.LE.0.0) GO TO 20 
S2=(X-VR*T)/DSQRT(4.*DR*T) 
S6=VR*X/DR 
S7=(X+VR*T)/0SQRT(4.*DR*T) 
E1=EXF(O.ODOO,S2) 
E2=EXF( S6, S7) 
IF(MODE.EQ.2) GO TO 2 
S3=VR*DSQRT(T/(DR*3.141593)) 
S4=(X-VR*T)*(VR*T-X)/(4*DR*T) 
S5=-0.5*(1.+VR*X/DR+VR*VR*T/DR) 
E3=EXF(S4,0.0DOO) 
GO TO 3 

2 S3=0.0 
S5=0.5 
E3=0.0 

3 A=0.5*E1+S3*E3+S5*E2 
IF(M.EQ.2) GO TO 30 
IF(RXOR.EQ.0.0) GO TO 10 
IF(MODE.EQ.2) GO TO 5 
S8=(X-VR*T+DR/VR)/(2*VR) 
S9=DSQRT(T*0.079577/DR)*(X+VR*T+2.*DR/VR) 



C 

91 

S10=T/2.-DR/(2.*VR*VR)+(X+VR*T)**2./(4*DR) 
GO TO 7 

5 S8=(X-VR*T)/{2.*VR) 
S9=0.0 
S10=-(X+VR*T)/(2.*VR) 

7 B=RXOR*(T+S8*E1-S9*E3+S10*E2) 
10 CXT=Cl+(CO-Cl)*A+B 
20 CONTINUE 
30 cx1~cxT-CO*A 

RETURN 

C ------CALCULATE RX1R.NE.O. CASE 
50 RAT=llXOR/HXlR 

DO 70 M=1,2 
A=O.O 
B=0.0 
T=TIME+(1-M)*TO 
lf(T.LE.0.0) GO TO 70 
S7=(X+VR*T)/DSQRT(4.*DR*T) 
IF(M.EQ.2) GO TO 55 
S1=-RX1H*T 
S2=(X-VR*T)/DSQRT(4.*DR*T) 
S6=VH*X/DR 
E1=EXF(O.ODOO,S2) 
E2=EXF(S6,S7) 
IF(MODE.EQ.2) GO TO 52 
S3=VR*DSQRT{T/{DR*3.141593)) 
S4=(X-VR*T)*(VR*T-X)/(4*DR*T) 
S5=-0.5*(1.+VR*X/DR+VR*VR*T/DR) 
E3=EXF(S4,0.0D00) 
GO TO 53 

52 S3=0.0 
S5=0.5 
E3=0.0 

53 A=EXF(S1,0.D00)*(1.-0.5*E1-S3*E3-S5*E2) 
55 CONTINUE 

U=DSQRT(VR*VR+4.*RX1R*DR) 
S9=(VR-U)*X/(2.*DR) 
S10=(X-U*T)/DSQRT(4.*DR*T) 
S12=(VR+U)*X/(2.*DR) 
S13=(X+U*T)/DSQRT(4.*DR*T) 
IF{MODE.EQ.2) GO TO 57 
S8=VR/(VR+U) 
S11=VR/(VR-U) 
S14=VR*VR/(2.*RX1R*DR) 
S15=VR*X/DR-RX1R*T 
S16=S14*EXF(S15,S7) 
GO TO 59 

57 S8=0.5 
S11=0.5 
S16=0.0 

59 B=S8*EXF(S9,S10)+S11*EXF(S12,S13)+S16 
60 IF(M.EQ.2) GO TO 80 

CXT={CI-RAT)*A+(CO-RAT)*B+RAT 
70 CONTINUE 
80 CXT=CXT-CO*B 

RETURN 
END 
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C 
SUBROUTINE MOD34(CXT,X,T) 

C 
C PURPOSE: CALCULATE C(X,T) FOR MODELS 3 AND 4 
C 

IMPLICIT REAL*8 (A-H,0-Z) 
COMMON/MODAT2/Cl,CO,DM1,XL,V,P,TO,BETR,OMEGA,R,DM2,DM3,DM4,Z,TT, 

lMODE,MDMY 
DIMENSION WG(5),XG(5) 
DATA XG/.04691008,.23076534, .50000000,.76923466,.95308992/ 
DATA WG/. 1184634, . 2393143, . 2844441J, . 2393143, . 118463/J/ 
EXTERNAL CCO 
TRO=V*TO/XL 
TR=V*T/XL 
Z=X/XL 
IF(Z.GT.0.0) GO TO 5 
Z=l. D-10 
IF(MODE.EQ.3) GO TO 5 
CXT=O.O 
IF(T.LE.TO) CXT=CO 
RETURN 

5 DO 20 M=l,2 
A=O.O 
TT=TR+(l-M)*TRO 
IF(TT.LE.O.) GO TO 20 
AP=DSQRT(1.+.05*P*Z) 
TMAX=DMIN1(TT,BETR*(Z+40.*(1.+AP)/P)) 
TMIN=DMAX1(0.DOO,BETR*(Z+40.*(1.-AP)/P)) 
IF(TMAX.LE.TMIN) GO TO 15 
Al=O.O 
IF(TMIN.GT.O.) GO TO 10 
TMAX2=TMAX*1.D-4 
DO 8 1=1,5 
TAU=TMIN+(TMAX2-TMIN)*XG( I) 

8 Al=Al+WG( I )*CCO(TAU) 
Al=Al*(TMAX2-TMIN) 
TMIN=TMAX2 

10 CONTINUE 
CALL ROMB(CCO,A2,TMIN,TMAX) 
A=Al+A2 

15 IF(M.EQ.2) GO TO 30 
CXT=Cl+(CO-Cl)*A 

20 CONTINUE 
30 CXT=CXT-CO*A 

RETURN 
END 
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C 
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C PURPOSE: TO CALCULATE INTEGRATION LIMITS FOR MODELS 5-8 
C 

IMPLICIT REAL*8 (A-H,0-Z) 
C 
C ----- CALCULATE VMIN -----

1 F(VMI N. GE. VMAX1 )RETURN 
F=(VMAX1/VMIN)**0.1 
DO 8 J=1,3 
DO 4 I= 1, 11 
CLSl=CAVG(VMIN) 
IF(CLST.GT.CMIN/100.) GO TO 6 

4 VMIN=VMIN*F 
VMAX=VMIN 
RETURN 

6 SLOPE=(CAVG(VMIN*1.001)-CLST)/(0.001*VMIN) 
IF(SLOPE.GT.O.) GO TO 10 
VMIN=VMIN/F 

8 F=F**0.1 
GO TO 20 

10 IF(CLST.LT.CMIN) GO TO 20 
DO 12 I =1, 5 
VMIN=VMIN-CLST/SLOPE 
IF(VMIN.LE.O.O)GO TO 15 
IF(CLST.LT.CMIN) GO TO 20 
CLST=CAVG(VMIN) 
SLOPE=(CAVG(VMIN*1.001)-CLST)/(0.001*VMIN) 
IF(SLOPE.LE.O.) GO TO 20 

12 CONTINUE 
GO TO 20 

15 VMIN=VMIN+CLST/SLOPE 
C 
C ----- CALCULATE VMAX 

20 F=(VMAX1/VMIN)**0.1 
VMAX=VMAX1 
DO 28 J=1,3 
DO 24 I =1, 11 
CLST=CAVG(VMAX) 
lf(CLST.GT.CMIN/100.) GO TO 26 

24 VMAX=VMAX/F 
26 SLOPE=(CAVG(VMAX*l.01)-CLST)/(O.Ol*VMAX) 

IF(SLOPE.LT.O.) GO TO 30 
VMAX=VMAX*F 

28 F=F**0.1 
RETURN 

30 IF(CLST.LT.CMIN) RETURN 
DO 32 1=1,5 
VMAX=VMAX-CLST/SLOPE 
IF(CLST.LT.CMIN) RETURN 
CLST=CAVG(VMAX) 
SLOPE=(CAVG(VMAX*l.01)-CLST)/(0.0l*VMAX) 
IF(SLOPE.EQ.O.) RETURN 

32 CONTINUE 
RETURN 
END 
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C 
SUBROUTINE ROMB(FUNC,AREA,XMIN,XMAX) 

C 
C PURPOSE: PERFORM ROMBERG INTEGRATION ON LOG-TRANSFORMED INTERVAL 
C 

C 

C 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION R(9,9) 
AREA=O.O 
IF(XMIN.GE.XMAX)RETURN 
LEVEL=9 
STOPER=0.00005 
XLNl=DLOG(XMIN) 
XLN2=DL.OG(XMAX) 
DX1=XLN2-XLN1 
SUM=0.5*XMIN*FUNC(XMIN) 
AREA=SUM*DX1 
R(1,1)=AREA 
DX2=DX1/2. 
INC=l 
00 20 1=2,LEVEL 
XLN=XLN1+0X2 
00 4 M=l, I NC 
XE=DEXP( XLN) 
SUM=SUM+XE*FUNC(XE) 

4 XLN=XLN+DXl 
AREA=SUM*OX2 
R( 1, I )=AREA 
00 17 J=2, I 
K=l+l-J 

17 R ( J, K ) = ( 4. ** ( J-1 ) *R ( J-1 , K + 1 ) -R ( J -1 , K) ) / ( 4. ** ( J-1 ) -1 ) 
I F ( R ( I , 1 ) . GT. 0. 0 ) GO TO 18 
IF( I .GT .4) RETURN 
GO TO 19 

18 ERROR= DABS ( ( R ( I , 1 ) -R ( I -1 , 2 ) ) / R ( I , 1 ) ) 
IF((ERROR.LT.STOPER).AND.( 1.GT.4)) RETURN 

19 OX1=DX1/2. 
OX2=DX2/2. 

20 INC=INC*2 
RETURN 
END 

FUNCTION CCO(TAU) 

C PURPOSE: CALCULATE ARGUMENT IN INTEGRAL FOR MODELS 3 AND 4 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON/MODAT2/DM1,DM2,DM3,DM4,DM5,P,DM6,BETR,OMEGA,R,DM7,DM8,0M9, 

lZ,T,MODE,MDMY 
CCO=O.O 
Gl=EXF(P*(BETR*Z-TAU)*(TAU-BETR*Z)/(4.*BETR*TAU),0.000) 
IF(MODE.EQ.4) GO TO 5 
G2=DSQRT(P/(BETR*TAU)) 
G=0.56419*G2*G1-P/(2.*BETR)*EXF(P*Z,G2/2.*(BETR*Z+TAU)) 
GO TO 10 

5 G=(Z/TAU)*DSQRT(P*BETR/(12.5664*TAU))*G1 
10 IF(G.LT.1.D-07) RETURN 

A=OMEGA*TAU/BETR 
B=OMEGA*(T-TAU)/(R-BETR) 
CCO=G*GOLD(A,B) 
RETURN 
END 
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C 
FUNCTION CAVG(V) 

C 
C PURPOSE: CALCULATE ARGUMENT IN INTEGRAL FOR MODELS 5-8 
C 

C 

C 

IMPLICIT REAL*B(A-H,0-Z) 
COMMON/MODAT2/Cl,CO,SOLOAD,XL,VR,DR,TO,RX1R,RXOR,R,VLNM,SDLN,DISP, 

1X, T,MODE,MODT 
VLN=DLOG(V) 
VR=V/R 
DR-,VR*D I SP 
IF(MODT.GE.7) TO=SOLOAD/V 
CALL MOD12(C,X,T) 
ARG=DMINl(l.D02,(VLN-VLNM)*(VLN-VLNM)/(2.*SDLN*SDLN)) 
PROB=DEXP(-ARG)/(2.50663*SDLN*V) 
IF(C.LT.1.D-70)C=O.DOO 
IF(MODE.EQ.1) CAVG=PROB*C 
lf(MODE.EQ.2) CAVG=PROB*C*V 
RETURN 
END 

FUNCTION EXF(A,B) 

C PURPOSE: TO CALCULATE EXP(A) ERFC(B) 
C 

IMPLICIT REAL*B(A-H,0-Z) 
EXF=O.DOO 
IF((DABS(A).GT.100.).AND.(B.LE.O.)) RETURN 
C=A-B*B 
IF((DABS(C).GT.100. ).AND.(B.GE.O. )) RETURN 
IF(C.LT.-100.) GO TO 3 
X=DABS(B) 
IF(X.GT.3.0) GO TO 1 
T=1./(1.+.3275911*X) 
Y=T*( .2548296-T*( .2844967-T*(1.421414-T*(1.453152-1.061405*T)))) 
GO TO 2 

1 Y=.5641896/(X+.5/(X+1./(X+1.5/(X+2./(X+2.5/X+1. ))))) 
2 EXF=Y*DEXP(C) 
3 IF(B.LT.0.0) EXF=2.*DEXP(A)-EXF 

RETURN 
END 
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C 
FUNCTION GOLD(X,Y) 

G 
C PURPOSE: TO CALCULATE GOLDSTEIN'S J-FUNCTION J(X,Y) 
C 

IMPLICIT REAL*8(A-H,O-Z) 
GOLD=O.O 
BF~O. 0 
E=2.*DSQRT(DMAX1(0.DO,X*Y)) 
Z=X+Y-E 
I F ( Z. GT. 1 7 . ) GO TO 8 
lf(F.NE.O.) GO TO 2 
GOLDccDEXP(-X) 
RETURN 

2 A=DMAX1(X,Y) 
B=DMINl(X,Y) 
NT=11.+2.*B+0.3*A 
lf(NT.GT.25) GO TO 6 
l=O 
IF(X.LT.Y) 1=1 
GXY= 1 . + I * ( B- 1 . ) 
GXYO,.,GXY 
GX=l .O 
GY=GXY 
GZ=l .0 
DO 11 K~l,NT 
GX=GX*A/K 
GY=GY*B/(K+I) 
GZ=GZ+GX 
GXY=GXY+GY*GZ 
IF((GXY-GXYO)/GXY.LT.1.D-08) GO TO 5 

4 GXYO=GXY 
5 GOLD=GXY*EXF(-X-Y,0.0D00) 

GO TO 8 
6 DA=DSQRT(A) 

DB=DSQRT(B) 
P=3.75/f 
B0=(.3989423+P*( .01328592+P*(.00225319-P*(.00157565-P*( .00916281-P 

1*(.02057706-P*(.02635537-P*( .01647633-.00392377*P))))))))/DSQRT(E) 
BF=BO*EXF(-Z,0.0000) 
P=1./(1.+.3275911*(DA-DB)) 
ERF=P*( .2548296-P*(.2844967-P*(l.421414-P*(l.453152-P*l.061405)))) 
P=O. 25/E 
C0=1.-1.772454*(DA-DB)*ERF 
Cl=0.5-Z*CO 
C2=0.75-Z*C1 
C3= 1. 875-Z*C2 
Cl~=6. 5625-Z*C3 
SUM=.1994711*(A-B)*P*(C0+1.5*P*(C1+1.666667*P*(C2+1.75*P*(C3+P*(C4 

1*(1.8-3.3*P*Z)+97.45313*P))))) 
GOLD=0.5*BF+( .3535534*(DA+DB)*ERF+SUM)*BF/(BO*DSQRT(E)) 

8 IF(X.LT.Y) GOLD=1.+BF-GOLD 
RETURN 
END 
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