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This bulletin describes a nonlinear least-squares inversion method
that can be used to 1identify several parameters in a number of
theoretical one-dimensional solute transport models. One of the
models discussed 1is the wusual convection-dispersion transport
equation that includes terms accounting €for linear equilibrium
adsorption, zero-order production and/or first-order decay. In
addition, a two-site/two-region model is described that can be
applied to various non-equilibrium transport problems. Also
included is a stochastic model that considers the effects of areal
variations in hydraulic fluxes on field-scale solute transport.
This last model also has provisions for zero- or first-order
production and/or decay. The least-squares inversion method can be
used to analyze both spatial and temporal distributions of flux or
resident concentrations. A detailed description of the computer
program, called CXTFIT, is given in one of the appendices of this
bulletin. Several example problems illustrating practical applica-

tions of the program are discussed in detail.
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1. INTRODUCTION

Concern about the behavior of wvarious chemicals in the
subsurface environment has resulted in the development of a number
of theoretical wmodels describing the basic processes of solute
transport in soils. With the introduction of more and more
sophisticated wodels, an important problem remaining is that of
quantifying various mwodel parameters, e.g., dispersion coefficients,
retardation factors, and degradation constants. One popular method
for determining these parameters 1s to fit them to observed
laboratory or field displacement data. 1In particular, least-squares
inversion methods have proved to be accurate and reliable tools for
this identification process. Early examples using least-squares
methods are given by Elprince and Day (1977), Laudelout and Dufey
(1977), Agneessens et al. (1978) and Le Renmard (1979).

In two previous reports we documented relatively simple
computer programs that applied nonlinear least-squares inversion
methods to deterministic equilibrium (van Genuchten, 1980) and
various non-equilibrfium adsorption models (van Genuchten, 1981).
Those programs are applicable only to breakthrough curves in time,
that 1is, to solute distributions determined at a fixed location
downstream of an injectiom point. In additiom, the previous
programs ignored any production and decay processes and did not
distinguish between analytical solutions applicable to different
concentration detection modes. In this report we extend and modify
the earlier programs to the analysis of resident- and flux-type
concentration distributions that have been determined versus
distance or versus time at more than one location in the soil
profile. Zero- and first-order production or decay terms are

included in the equilibrium adsorption model.



Spatial heterogeneity of medium properties often limits the
applicability of deterministic approaches to mass transport for
field-scale problems. 1In this report we also present a stochastic
model that considers the effects of areal varlations in hydraulic
fluxes on transport for a solute subject to linear equilibrium
adsorption and zero- and first-order production or decay. Calibra-
tion of this model wusing field observations of spatial and/or
temporal resident or flux concentrations can be achieved by
application of the least-squares inversion method.

After presenting the different analytical models, a descrip—
tion of the computer program 1is given, followed by a discussion of
several examples that 1llustrate typical applications of the
inversion method. Program listings, input instructions, and example
input and output files are presented 1in various appendices.
Machine-readable copies of the FORTRAN IV program are available from

the authors upon request.

2. GENERAL FORMULATION OF THE TRANSPORT EQUATION

Trangport of a single reactive solute species during steady
fluid flow in a one-dimensional homogeneous system may be described
by

3s ac 3 c dc up Ysp

r r r s
== 4+ = - = - -— —
D v c s + Yy + ) [1}]

olo

t ot 2 ax wr ]
ax

where c,. is the volume-averaged resident concentration of the solute
in the liquid phase (ML—3), s 1s the adsorbed concentration per unit
mass of the solid phase (MM—I), x is distance (L), t is time (T), D
is a dispersion coefficient reflecting the combined effects of
diffusion and hydrodynamic dispersion on transport (LZT'l), v is the
average pore-water velocity (LT-I), p 18 the porous medium bulk
density (ML_3) and 6 is the volumetric water content (L3L_3). The
coefficients , and K, are rate constants for first-order decay in
the liquid and solid phases of the soill, respectively (T-l). The
coefficients Yy and Yq represent similar rate constants for zero-

-3T—1 1

order production in the two soil phases (ML and T , respec—

tively).
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The solution of [l] requires an expression relating the
adsorbed concentration (s) to the solution concentration (cp).
Various expressions for s have been presented in the literature for
which analytical solutions of [l1] can be obtained. This study
considers deterministic solutions of [l1] applicable to various
linear equilibrium (section 3) and non-equilibrium (section &)
adsorption models. Also presented is a stochastic model that
explicitly considers spatial heterogeneity in v and D for the case
of linear equilibrium adsorption (section 5).

In addition to the adsorption term, Eq. [l] must be augmented
with auxiliary equations describing the initfal and boundary condi-
tions of the system under study. In all cases, the initial

condition is assumed to be of the simple form
ep(x,0) = C; (2]

where C; 1s a constant.

There has been wuch discussion in the literature about the
type of boundary conditions that are most appropriate for finite and
semi-infinite systems. In earlier studies (van Genuchten and
Parker, 1984; Parker and van Genuchten, 1984), we showed that a
third- or flux-type boundary condition should be used at the inlet
position (x=0), 1i.e.,

D act
v

(e, -5 327

r = cin(t) (3]

x=0
where Cin(t) is the concentration of the 1injection fluid as a
function of time. Equation [3] implies a discontinuity in
concentration across the injection boundary, which 1increases with
the value of the apparent dispersivity D/v. This'discontinuity is a
direct consequence of the assumption that at the injection plane a
boundary layer of infinitesimal thickness develops im which the
system parameters change discontinuously from those of a perfectly
mixed inlet reservoir (x < 0) to those of the bulk porous medium (x
> 0). Microscopically, this change always takes place over a finite

transition region.



The lower boundary condition for an effectively semi-infinite
system can be written as

Bcr
e (=,t) = finite [4]

For a finite system of 1length L, a frequently used boundary
condition is

ac
a(L,t) = 0 (5]

This condition disregards the development of a boundary transition
layer similar to that noted for the injection boundary. 1In effect,
the concentration 1s forced to be continuous across the exit
boundary. Accommodating the presence of a boundary layer at x = L
leads to a discontinuous concentration distribution across the lower
boundary, and thus to a gradient in c,. interior to the transition
zone that is not constrained to be zero. So long as backmixing at
the exit boundary is negligible (which generally is the case), Eq.
[4] for the semi-infinite case can be used with impunity and the
resulting solution for c.(x,t) applied to the finite region
0 < x <L as well (Parker and van Genuchten, 1984; Parker, 1984).
Accordingly, all solutions in this report are based on [4].

In many instances, the experimental conditions are such that
measured concentrations are flux-averaged rather than volume-
averaged. This 1s the case when effluent concentrations from column
tracer experiments, pan lysimeters or subphreatic wells are
analyzed. To meaningfully interpret such measurements, it 1is
imperative that the concentrations not be assumed to represent
resident concentrations (cr) at the outflow boundary. Instead, they
must be treated as representing flux-averaged concentrations (cf),
which are defined by (Brigham, 1974; Kreft and Zuber, 1978):

e = I/ (6]



where J and q are the solute and liquid flux densities, respec-

tively:

[
1
el
2]
la}
i
@
=}

e [7]

and

q = 6v [8]

<ig
o]

T [9]

Hence, the flux-averaged concentration, cg, represents the "mass of
solute per unit volume of fluid passing through a given cross-
section during an elementary time Interval” (Kreft and Zuber,
1978). 1In this report, we will use analytical solutions of [1] for

both the volume-averaged concentration, c¢ and the flux—averaged

r!
concentration, Cg.

3. LINEAR EQUILIBRIUM ADSORPTION MODELS

Consider the case where adsorption is described by a linear or

linearized isotherm of the form
s = kcr [10]

where k is an empirical distribution constant [L3M-1]. Substituting
[10] in [l] yields

ac 9 cr Bcr
Re =D 7 " Vg ~ ety [11]

where the dimensionless retardation factor R is defined as

R=1+ pk/8 [12]



6

3.-1

and the new rate coefficients y and y ('I‘—l and ML™°T~ , respective-

ly) are given by

=
]

u, * u pk/8 [13)

=<
(]

Y, t Ygp/0 [14]

We will consider solutions of [l1] for pulse—-type input boun-
dary conditions of the form
3¢ Co 0<t < t,
c, ~v5| = [15]
X 0 t>t
o

where C° is a constant. Because solutions for zero values of u do
not follow directly from the more general solutions for non-zero y,
the two cases of zero and non-zero first-order degradation will be
considered separately. On the other hand, all solutions for y= 0
can be obtained immediately from those for non-zero vy by simply

forcing this coefficient to be zero in the analytical solutions.

3.1. Solution for Cp with pu # 0.
The analytical solution for this problem is (see case C6 of

van Genuchten and Alves, 1982)

-‘IJ+ (cy- -{) A(x,t) + (C - —:) B(x,t) 0<t <t

cr(x,t)

Y Y - X — -
T + (ci— —u) A(x,t) + (co u) B(x,t) COB(x,t to) t > t,

where
yb

2
A(x,t) = exp(- 1) {1 -3 erfc['RL——v‘;z] - G emel-
- 2(DRt)



1 vX , v t VX Rx + vt
+ 5 (1 + = + —2) exp(—=) erfe[——— }
2 ot IR D 2(DRt)I7£
(v-u)x Rx - ut
B(x,t) = == exp[~:27] erfe[~——
viu 2D 2(DRt) 2]
v (vtu)x Rx + ut
+ —— exp[*-53~—] erfc[——
v—u 2D 2(DRt) }
+~—XE exp(E - iE) erfc[gi—+ A
71D D R 2(oRey 2

and

2 2
u=(v + 4uD)

3.2. Solution for ¢, with u = 0.

Because of a division by zero, the analytical solution above
cannot be used for the special case when first-order decay is negli-
gible. For u = 0, the solution reduces to (case B6 of van Genuchten
and Alves, 1982)

Ci + (Co— Ci) A(x,t) + B(x,t) 0<¢t <« t,
c(x,t) =
\ci + (€= C;) A(x,t) + B(x,t) - C A(x,t-t ) t >ty
where
1 Rx - vt 2 "2 (Rx - vt)?
-V v -V
A(x,t) =3 erfc{mzl + (o) exel- —gpre ]
Rt
1 VX v2t VX Rx + vt
= "2‘ (1 +—3 +—Dﬁ) exp(——ﬁ) erfc[—-———j_y

2(DRt)



B(x,t) =1 [t + (%% - +-133§) erfe[XX = Vt;

t
LI 2(DRt)
L 2
2 2DR Rx -
- (T:r—D—E) (Rx + vt +——v——) exp[- —T—-—( DR‘t’t) ]

2
t DR , (Rx + vt) VX Rx + vt
+ [z - — + >———~] exp(—) erfc[~——17 .
27,2 4DR D 2(DRt) 2}

3.3. Solution for ¢ with u #0.

The solutions for the flux—averaged concentrations (cf) follow
immediately from those of the volume-averaged concentrations (Cr)
above by making use of definition [9]. Alternatively, the desired
expressions for ¢y can be found by first using [9] to redefine
transport equation [l1] and its initial and boundary conditions in
terms of the flux-averaged concentration, and subsequently solving
the transformed set of equations. To accomplish the latter, let us

first differentiate [9] with respect to x and t, to give respec-

tively
2
ac 3c "¢
f__T*_D r [16]
ax ax v 2
ax
ac ac Bzc
___f_ = —r . _Iz r [17]
at at v 3tdx

Combining [l1] and [16] gives

ac ac

r_— —— -
R e -V we, +y [18]

Next we use [17] to eliminate acr/at from [18]:

2
3¢ oc
_f£_ _RD r_,£f.
Rat - v atadx "ax ucr+Y




3 Bcr ac
Ix (R——at ) — Vg T ety [19]

D
v

which, again with [18] and some rearranging, yields

D r
at 7 " Viax u(cr— v ax )+ . (20]

- - f —
3t 7 "V Tty [21]

which is identical to [l11], except that the volume-averaged concen-
tration, Cey is replaced by the flux—averaged conceantration, cge

The initial and boundary conditions are transformed in the
same manner to give

cf(x,O) =Gy [22]

ac

W(w,t) = finite [23]
c, 0<t < t,

cf(O,t) = [24}
0 t > to

The transformation from [4] to [23] formally requires that the

second spatial derivative of c_. also be finite when x + ». Using

r

the different solutions for c,, one may verify that this criterion

is 1indeed always met. Note that the transport model for c; is
exactly the same as the model for Cr» except that the third-type

input boundary condition for c_. has been transformed into a first-

r
type condition for Cge
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The cowmplete solution of Eqs. [21] through [24] is (case C5 of

van Genuchten and Alves, 1982)

-}J+ (c;- —Yu) A(x,t) + (C - {) B(x,t) 0<t <ty
Cf(x,t) =
W+ (c- ) ax,0) + (C - D Bx, ) - C Bt ) £ > e
where
A(x,t) = exp(—-EE) 1 -1 erfc[Rx AR exp(X§) erfc[Rx + vt
S v 2oner?

21 v=u)x Rx - ut 1 viu)x Rx + ut
B(x,t) = 2 exp[i—iﬁl—] erfc[;z;;:;7 + 2 expfg-iﬁ——] erfc[z(D;:%d

and

2 1/2
u= (v + 4uD)

3.4 Solution for cg with p = 0.
The solution is (case B5 of van Genuchten and Alves, 1982)

Ci+ (Co— Ci) A(x,t) + B(x,t) 0<t < to
c(x,t) =

c; + (Co— Ci) A(x,t) + B(x,t) - COA(x,t-to) t > t,

where

-~ +
A(x,t) =-% erfc[Rx vt +-% exp(!%) erfc[Rx vt

2(DRt) 2(DRt) }
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B(x,t) =—l¥ {t; + _(.:R_Jf%z_L). erfc[g-’—(—: v.tzl

2(DRt)
_ (Rxtvt) exp(JX Rx + vt
5y p(—=) erfe[—-- }
v b 2(13Rc‘)1"72

4. TWO-SITE/TWO-REGION NON-EQUILIBRIUM MODELS

We now consider the case where the adsorption term in [1]
consists of two components, one governed by equilibrium adsorption
and one by first-order kinetic non-equilibrium adsorption, This
type of “two-site” adsorption model has been discussed by
Selim et al. (1976), Cameron and Klute (1977), Rao et al. (1979), De
Camargo et al. (1979), Hoffman and Rolston (1980) and by Fluhler and
Jury (1983). Basic to the two-site adsorption model is the idea
that the solid phase of the soil 1is made up of different
constituents (soil minerals, organic matter, iron and aluminum
oxides), and that a chemical is likely to react with these different
constituents at different rates and with different intensities. The
model assumes that sorption sites can be divided into two fractions;
adsorption on one fraction ("type-1" sites) 1is assumed to be
instantaneous, while adsorption on the other fraction ("type-2"
sites) 1is thought to be time-~dependent. As was the case in the
earlier report (van Genuchten, 1981), we will ignore any production
or decay processes for the non-equilibrium models.

At equilibrium, adsorption on both the equilibrium and kinetic

sites is described by linear equations:

= Fke_ [25]
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8y = kyep

= (1-F)ke, [26]

where the subscripts 1 and 2 refer to type-1 (equilibrium) and type-
2 (kinetic) sites, respectively, and where F is the fraction of all
sites occupied by type-l1 sorption sites. Total adsorption at

equilibrium is simply
s = Sl + 52 = kCr [27]

Because type-l sites are always at equilibrium, it follows from [25]
that

—= = Fk — [28]

The adsorption rate for the type~2 kinetic non-equilibrium sites is

glven by a linear and reversible rate equation of the form

852
50 = alkye = 8y) [29])

where o is a first-order rate coefficlent (T-l). Ignoring the
production and decay terms in Eq. (1) and combining this equation
with the adsorption expressions above 1leads to the following

transport model:

2
ac 98 3¢ 3c
Fpk r.,.p 2 - r _ r
A+ 55 Y55 Daz V3% [30]
X
Bsz
5 = al(1-F)ke - s,] (31]
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As in previous cases, Eqs. [30] and ([31] will be solved for a
uniform initial concentration (Eq. 2) and for a pulse-type injection
(Eq. 15) into a semi-infinite medium. For S, an additional initial

condition is required:
sz(x,O) = (l-F)kCi. [32)

The following dimensionless variables are introduced:

T = vt/L [33])
z = x/L [34]
P = vL/D 135]
R=1+ pk/6 [36]
_ 8+ Fpk
B = o ¥ ok (37]
w = a(l-B)RL/v [38])
c_~C
i
© 7T T, 139)
[¢] i

s, = (l-F)kCi

S = TRl =€) [40]
2 (1 F)k(Co Ci)

where L 1is an arbitrary positive distance from the origin.

Substituting these variables into [30] and [31] yields

BRor + UBRp "3 7 ~ 5 (1)
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Bcz
(1-B)R 5= = w(cy = ¢y). [42]

As pointed out by van Genuchten (1981), a mathematical problem
identical to that of the two-site kinetic wmodel is obtained when
apparent non-equilibrium conditions in the system are attributed to
large heterogeneities in microscopic pore-water velocities. This
approach assumes that the liquid phase can be partitioned into
"mobile"” (dynamic or macro-porosity) and "immobile" (stagnant orv
micro—porosity) regions. Convective and dispersive transport is
restricted to the mobile water phase, while transfer of solutes into

and out of the immobile (nonmoving) 1liquid phase 1s assumed to be

diffusion-limited. The governing equations for this two-region
model are
acm Bcim azcm acm
(O + £ok) 5 + (0,0 (1-D)ok] g0 = 00y —5% = a5 [43]
(6, + (1-£)ok] Cin ac -c,) 44
im e at m im [44]

where Cm and Cin 3re the resident concentrations of the mobile and
immobile 1liquid phases, respectively; em and eim are the mobile and

immobile volumetric water contents such that 6 = 9m+ [E] Dm is the

s
dispersion coefficient for the mobile regiom, f r::iesents the
fraction of the sorption sites that equilibrates with the mobile
liquid phase, and a* is a first-order rate constant that governs the
rate of solute exchange between the mobile and immobile regions.

The dimensionless form of the two-site model is identically
preserved when [43] and [44] are expressed in terms of T, z and R

(Eqs. [33], [34] and [36]), and the following reduced variables:

P = me/Dm [45])



15

em + fpk
B ='*6—;—BE— [46]
*
w= aL/q [47]
c - C,
. m i
©17¢ -¢ (48]
] i
- Cim ~ Y4
©2°7¢ -¢ [49]
o i

where v, = q/em. Note that [45] 1s the same as [35] if we define D
for the two-region model as D = Dmem/e. Because the dimensionless
transport equations and their initial and boundary conditions are
identical, parameters obtained by fitting data to the two-site
adsorption model may be interpreted also in terms of a two-region
physical non-equilibrium model (and vice-versa) if deemed appro-

priate.

4.1. Solution for c..

Analytical solutions of Eqs. [41] and [42], or of mathemati-
cally similar equations, have been derived for a variety of initial
and boundary conditions (Lapidus and Amundson, 1952; Coats and
Smith, 1964; Villermaux and van Swaay, 1969; Bennet and Goodridge,
1970; Lindstrom and Narasimhan, 1973; Lindstrom and Stone, 1974; van
Genuchten, 1974; Lindstrom and Boersma, 1975; Lindstrom, 1976;
Cameron and Klute, 1977; Popovic and Deckwer, 1976). As shown by De
Smedt and Wierenga (1979), these solutions can all be expressed in
the same general format. For the initial and boundary conditions of
this study, the solution for the volume-averaged concentration (ct)
in terms of the reduced variables given in the previous section is

(see also van Genuchten,-1981):
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C; +(C, - Cy) A(z,T) 0<T<1‘o
¢, (z,T) = [50]

Lci +(Cy - Cy) A(z,T) - C A(z,T-T,) T>T,

where
T
A(z,T) = é g(z, 1) J(a,b) dt [51}
1/2 _ 2
glz, 1) = (—“%(—T) exp{ -~ %—T—)—]
P P &
-3 exp(Pz) erfc[(—————ABRT) (BRz + 1)] [52]
_b a _A ——
J(a,b) =1 -e [ e I, [2/b2] dx [53]
0
a =%§ [54]
and
_ w(T~1)
ey (>3]

The function J(a,b) above is often referred to as Goldstein's J-
function (Goldstein, 1953); 1 in this function represents a zero-
order Bessel function. Some properties and computational approxima-
tions of the J-function are summarized elsewhere (van Genuchten,
1981). We emphasize here that the analytical solution for c, above
represents the volume-average concentration of the entire liquid
phase if applied to the two-site model, while for the two-region
model the solution represents the volume-averaged concentration of

the "mobile” 1liquid phase only.
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4.2. Solution for Cge
The analytical solution for the flux-averaged concentration

(Cf) follows immediately if one applies transformation [9] to the

analytical solution for c¢. given 1ian the previous section. The

r
solution is exactly the same as before, except that [52] is replaced
by

gQ

32
gz, 0 = ET (—Z——i%) exp(- 242~ D)

spRT (561

One may verify that the solution for ¢¢ thus obtained is the analy-
tical solution of Eqs. [41] and [42] for a semi-infinite medium
subject to a first-type input boundary condition of the same form as

given by Eq. [24] of section 3.3.

5. REGIONAL TRANSPORT MODELS

Growing evidence in the 1literature indicates .that determin-
igstic solutions of the convection-dispersion equation may not
adequately describe solute transport in natural porous media at the
field-scale (Gelhar et al., 1979; Bresler and Dagan, 1981; Pickens
and Grisak, 198l; Amoozegar-Fard et al., 1982; Simmons, 1982; Tang
et al., 1982). At least in part, this 1nadequacy is caused by
medium heterogeneities which often increase significantly with the
scale of observation. The two-region model discussed in the
preceding section represents an attempt to accommodate pore
structure variability at a scale intermediate between the usual
laboratory measurements and the larger field scale. To evaluate the
effects of field-scale heterogeneities, the stochastic nature of the
transport process must be explicitly dealt with. The model
formulated below 1is similar to the one-dimensional stochastic
transport models of Bresler and Dagan (1981) and Amoozegar-Fard et
al. (1982). Conceptually, we regard the transport region as being
composed of numerous parallel porous colummns (which we denote as the

“local scale"), each having specific properties and being subject to
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specific 1local boundary conditions. We further assume that
transport within each column can be described by the one-dimensional
convection-dispersion equation (Eq. 11) with deterministic
coefficients. Lateral flow, transverse dispersion, and vertical
inhomogeneities are thus regarded to be negligible.

Variations in local pore water velocities are considered to be
log-normally distributed. Because the flow region 1s assumed
implicitly to be fixed, a unique realization of the stochastic
variables will be obtained and the actual spatial pattern of the
velocity distribution is of no concern. The probability density

function for an idealized log-normal distribution of v is

) . ) - ulnlz}
(V) = ———yy  exp{- ——py—— [57]
voy (2m) 2 ZOin

where W and oy, are the mean and standard deviation of lu(v). The
density function 1s normalized so as to yield unity for the integral
of p(v) from v = 0 to ». The first moment, <v>, of this density

funtion gives the expected value of v:

f: v p(v) dv
v> = —F/————— [58]
fo p(v) dv

which yilelds

> = exp(uy +3 ). [59]

Hence, <v> represents the mean field value of v.

Dispersion coefficlents measured at the scale of single
solution sampling devices have also been found to vary log—normally
(Biggar and Nielsen, 1976). These variations, however, are not
independent of the observed pore water velocity variations and may,

to a first approximation, be described by the relation
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D = ev ‘ [60]

where ¢ is the local-scale dispersivity (L). We assume € to be
deterministic and constant within the flow region. This assumption
effectively means that p(D) is defined completely in terms of p(v)
and e. Sensitivity analyses suggest that variations in D beyond
those linked directly to v through [60] are insignificant compared
to the effects of areal velocity variations on local convective
transport (Amoozegar-Fard et al., 1982).

We further assume that water contents, adsorption coefficients
and the zero- and first-order reaction constants are all determinis-
tic variables. Thus the medium properties are completely defined by
the deterministic coefficients R, uy, vy and ¢ and the stochastic
probability density function p(v), characterized by the coefficients

and %a We now consider solutions for field-scale resident and

u
1n
flux concentrations pertinent to specified field-scale initial and

boundary conditions.

5.1. Solution for er.
The field-scale resident coancentration ér represents the mean
concentration value occurring over any plane perpendicular to the

velocity field and parallel to the injection boundary:

/ c dA
. o LA [61)
“r } dA

(a)

where cr is the local-scale concentration and A is the areal domailn

of 1interest. Since veloclity 1is the only stochastic variable over

the areal domain, [61] may be written as

fom c p(v) dv (62]
fow p(v) dv

-

r

where 6r=€r(x,t) and c =cr(x,t,v). By definition of the normali-

r
zed density function, the denominator in {62] 1is unity. Equation
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[62]) indicates that ér represents the expected value of the random

variable c. (denoted as (cr>).

To solve [62], we must evaluate the local value of ¢, which
is assumed to be described by analytical solutions of section 3.1
and 3.2 for a uniform initial condition and a pulse-type injection
at the local scale. The initial and input concentrations (Ci and
Co) in these solutions are assumed to be deterministic. The field-
scale injection boundary condition can be formulated in one of two
ways. To stipulate these conditions, let us first introduce the

cumulative local inlet solute flux M (ML—Z):

t
M(t) = [ J (1) dr [63]
0

where J, is the local mass flux density at the inlet boundary. For

a pulse-type injection, [63) yilelds

vecot 0<t« to
M(t) = [64]
vSCot° t > to

We also define M, = M(tsw) = vBCot° which represents the total
amount of material to be added to the profile. The two field-scale
boundary conditions for which we will obtain solutions are deter-

mined by the following situations:

(1) Deterministic to, 9, Co; Stochastic MO, V.

(2) Deterministic Mo’ e, C Stochastic to’ v.

o’
Thus either the pulse duration (t;) or the asymptotic value of the
cumulative influx (Mo) may be taken as constant.

By fixing tos it 1s implied that M and M, vary locally in
direct proportion to v. The mean value <M> of M at the field scale
is then
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<v>6C t 0<t <t
M>(t) = [65]

<v>6C t t>t
oo o

As before, let <M°> = <v>ec°t°. Equation [65] should be used when a
tracer solution is applied uniformly over the flow region for a
fixed time period.

A second field-scale boundary condition can be formulated by
stipulating a uniform local cumulative flux Mo= M(t+>) , thus indi-
cating that t, varies {inversely with v in accordance with [64].
This condition 1s appropriate when chemicals are added uniformly
over an area Iin solid form and subsequently leached continuously

with a solute-free solution. In that case, C, may be viewed as

o
being governed by the chemical solubility. The temporally integra-

ted areal mean mass flux is now given by
t v M

a(e) = [ [° 8c p(v) dv dr (v, =
00

o

Toc") [66]
(]

which in the limit when t + = ylelds <M>(x) = <M°> = M,.
The initial and boundary conditions for the reglonal transport

models are completely defined by the constants Cy, C
(o

o and t, or by

i Co’ M° and 6. When 1in addition € and the reaction constants
R, p and y are known, the solutions for cr(x,t,v) of sections 3.1
and 3.2 can be applied. Further specification of ;. and %1q
defines p(v), thus allowing Cr to be evaluated by numerical
quadrature of [62].

For purposes of field calibration involving a large number (m)
of random observations for ¢, at fixed x and t over the areal extent
of the flow region, we may take p(v) = 1/n 1in [62] for each

observation C,i- This discrete case gives

(23
]
ol

n
121‘:’1 [67]
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which 1is simply the arithmetic average of the observed 1local
resident concentrations. When observations are not available at
fixed % and t, it may be feasible to ianterpolate between given x and

t graphically or by means of smoothing functions prior to averaging.

5.2. Solution for éf-
Let us define a field-scale flux concentration éf in the same
fashion as introduced earlier (Eq. 6) at the "local™ level:

é, =>< (68]

where <J> and <q> respectively represent the time~dependent solute
mass flux and volumetric fluid flux across a plane perpendicular to
the velocity field. From the definition of ¢y at the local
continuum level (Eq. 6), we may replace J by qcg- With the

assumption that 6 is deterministic, [68] becomes then

_ ivcf>

¢ = o [69]

which in turn may be expanded to give

f ve p(v) dv
5 f
éf P — : [70]
[ ve(v) dv
0
The denominator in [70] can be obtained analytically for the log-
normal distribution function as indicated by [58] and ([59]. The
numerator can be evaluated numerically for given p(v) and cg, with
the latter obtained analytically from the solutions in sections 3.3
and 3.4. Field-scale initial and boundary conditions for éf are
analogous to those imposed on ér.
From Eq. [70], 1t follows that &_ differs from the expected

f
value <cf>, which for deterministic 6 is given by
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| cep(v) dv
<ep> = —0—;—— . [71]
[ o(v) av
0

This behavior is in coantrast to that for ér = <cr> and has important
implications to model calibration via measurements of local cg~
values. For the general case of variable water content 6, random

sampling leads to the discrete form for éf:

n
) (qeg)y
= - [72]

q.
1 1

L _d
Cf

83—

i

Because local values for q are not easily obtained experimentally,
evaluation of the field-scale flux-weighted average concentration
(Eq. 72) 1is extremely difficult. In general it is therefore
advisable to use resident concentration measurements for calibration
of regional transport models. The main advantage of the solution
for ce lies in the fact that it leads directly to an estimate for
the field-scale solute flux <J>(x,t) for given <g>.

6. COMPUTER PROGRAM DESCRIPTION

A FORTRAN IV computer program (CXTFIT) was written that permits
one to fit any of the previously discussed analytical solutions for

c g, ér or € _to observed concentration distributions as a

>

fznction of time ﬁnd/or distance. The curve-fitting method uses the
maximum neighborhood method of Marquardt (1963) to winimize the sums
of squares of the residuals between observed and calculated concen-
trations. A detailed description of the method is given by Daniel
and Wood (1973). Two previous versions of this same curve-fitting
program were used by van Genuchten (1980, 1981) to analyze break-
through curves in time. Program CXTFIT can be applied also to

spatial concentration distributions (e.g., as obtained from
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sectioned soil columns or from fleld core data) as well as to
simultaneous spatial and temporal distributions (e.g., as obtained
from replicated cores sectioned at different times). The basic
format of the earlier programs, including notation and set-up of the
input data file, has been maintained as much as possible. Aside
from the least-squares regression analysis, the program can be used
also to predict spatial and temporal concentration profiles for
given coefficient values using ome of the analytical solutions
listed in this report. The least-squares inversion part of the
program will be bypassed in that case. A listing of CXTFIT is given
in Appendix E.

A list of the most important parameters of CXTFIT is presented
in Appendix A. Appendix B gives instructions for setting up data
input files, while Appendix C lists selected input files used for
various examples to be discussed later. The computer output file
for these examples 1is given in Appendix D.

The computer model itself consists of a MAIN sectiom, six
subroutines (LIMIT, MATINV, MODEL, MOD12, MOD34 and ROMB) and four
functions (CAVG, CCO, EXF and GOLD). Input and output instructions
and most of the parameter optimization calculations are carried out
in MAIN. Of the four functions, EXF evaluates the product of the
exponential function (exp) and the complementary error function
(erfc). The function CAVG calculates the arguments of the integrals
in [62] and [70] for the reglonal transport model. The function CCO
calculates the argument of the integral in [51] for the two
site/two-region model, while GOLD evaluates Goldstein's J-function
that appears in that same equation.

Of the six subroutines, MATINV performs a matrix inversion
needed for the least-squares analysis. Subroutine MODEL performs
coefficient assignments and routes execution to the appropriate
subroutine for evaluation of one of the analytical solutions.
Subroutine MOD12 evaluates all analytical solutions for determinis-

tic models 1involving linear equilibrium adsorption while MOD34
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similarly evaluates the analytical solutions for the two-site/two-
region non-equilibrium models. The stochastic models also call on
subroutine MOD12 to evaluate local concentration distributions.

Numerical integrations required for the two-site/two-region
and stochastic models are carried out in subroutine ROMB which
performs an eighth-order Romberg quadrature on a log-transformed
interval. A relative error (STOPER) of 5x10_5 is currently used in
ROMB. For most of our problems, convergence was reached with only
16-32 quadrature points. This high degree of efficiency was
achieved in part by using a logarithmic transformation and in part
by judiciously limiting the integration ianterval to a small regiom
within which the argument of the integral is not negligible. This
approach concentrates the quadrature points in the region of
greatest sensitivity.

The modified lower (Tl) and upper (T2) integration limits

employed for the two-site/two-region models are (see also Eq. [51])

Tl = MAX(0.,A) (73]
T2 = MIN(TT,B) {74}
where
40BR Pz &
A= BRz +— [1- (1 +35 ] (75]
408R Pz H&
B=gRz+—p [1+(1+35 ]. [76]

This modified integration interval was obtained by limiting integra-
tion to that region where the exponential function in [56] exceeds
exp(-20). In instances where a zero lower limit remains, a five
point Gaussian quadrature 1s carried out in MOD34 on the interval
from 0 to T2x10_4 before passing to ROMB. This procedure was found
to be more accurate and efficient than a fixed 40-point Gaussian
quadrature scheme previously applied to the untransformed interval
(van Genuchten, 1981).
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To increase computational efficiency, we also narrowed the
integration limits for the stochastic transport model. Computation
of these limits in subroutine LIMIT involves incremental searching
with convergence by the Newton—-Raphson method. Reasonable initial
estimates for the narrowed limits, derived from known properties of
the probability density function and also using the relationship
between initial breakthrough and the 1local Peclet number Pz=x/g,
facilitated rapid convergence to suitable limits. For most problems
that we investigated, subroutine LIMIT required only 10-20 solutions
for local concentration values, while subsequent numerical
integration in subroutine ROMB required 16~32 quadrature points.

Table 1 1lists salient features of the -eight models, each
distinguished by a different value for the input parameter MODE.
Model parameters listed in the table represent the variable
coefficients for each model, i.e:, coefficients that potentially can
be fitted to observed data. The deterministic equilibrium models
(MODE
(MODE

1,2) and the two-site/two~region non-equilibrium models

3,4) each contain six parameters, while the stochastic
models (MODE = 5,6,7 or 8) contain seven parameters. Note that t,
is a fixed input parameter for Models 5 and 6, while for Models 7
and 8 the ratio MO/B must be entered. Also note that for the
stochastic models the probability distribution function for v is
described by <v> and ¢

rather than by Ya and o This mode of

input was deemed more QZqul because it is much mo:: likely that one
has an estimate for the mean field velocity <v> rather than My the
latter quantity corresponding to the median of the untransformed
velocity distribution. For example, <v> can at least in principle
be estimated from a simple water balance. Due to the log~transfor-

mation, o, represents a dimensionless index of the dispersion of

1n
the velocity distribution.

0f the six coefficients in Models 1-4, at most five are
mutually independent. Thus, for those models a maximum of only five

parameters can be fitted simultaneously to the observed data. This
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Table 1. Characteristics of models designated in program CXTFIT

Model Model Type Concentration Model Report
number detection mode parameters section
(MODE)
1 Deterministic linear Resident v,D,R,to,u,y 3.1
equilibrium adsorption
2 Same as 1 " Flux Same as 1 3.2
3 Two-site/two-region Resident v,D,R,t,, B0 4.1
4 Same as 3 Flux Same as 3 4.2
5 Stochastic linear Resldent <v>,e,R,t°, 5.1
equilibrium adsorption WY, 0y

with constant t,

6 Same as 5 Flux Same as 5 5.2
7 Stochastic linear Resident <v>,e,R,M°/e, 5.1
equilibrium adsorption MY 0

with constant Mo

8 Same as 7 Flux Same as 7 5.2

dependency of at least one of the coefficients follows immediately
by considering one of the transport equations, for example Eq. ([l1]
for the linear equilibrium adsorption model. It is apparent that
dividing this equation through by a constant permits one of the
coefficients to be eliminated. Consequently, at least one of the
coefficients v, D, R, por y in [11] must be known independently.
Because the values of D, uand y generally are not easily measured
independently, in practice either v or R (or both) must be known
beforehand. For non-adsorbing chemicals, R = 1, and the pore-water
velocity v can be fitted to the data 1if so desired--a useful
procedure when poor estimates for v are available, e.g., because of

uncertainty about the effective water content in the system owing to
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negative adsorption (assuming the flux q to be kndwn), or because of
experimental problems. For adsorbing chemicals, R can at least in
principle be estimated using batch-equilibration techniques, thus
allowing v to be estimated from tracer experiments. On the other
hand, R is often obtained also by directly fitting this coefficient
to experimental data. In that case it is imperative that an
accurate independent estimate for v be obtained first.

In addition to the mutual dependeny of v and R, we also
observed in some cases significant interactions between the
coefficients u, y and ¢, (see examples 1 and 2 of section 7). This
behavior is not surprising since these three parameters, together
with R, determine the total amount of solute that will be found in
the porous medium (or in the effluent). Similar interactions also
occur for Models 5-8, in particular between <v> and R and between y,
yand t  (Models 5, 6) or u, vy and M /O (Models 7, 8). To avoid
these type of uniqueness problems, we recommend to limit as much as
possible the number of coefficients that will be fitted to observed
data. Limiting the number of unknown coefficients is particularly
important when experimental and wmedium variabilities create
uncertainty in the data.

Appendix B gives instructions for setting up the data input
file. The first card specifies the number of examples that will be
executed. The second card sgpecifies the model number (MODE) as
indicated in Table 1 and a data 1input code (NDATA) specifying
whether the next example uses the same c¢(x,t) data as in the
previous example (but for a different model number), or whether new
data are to be read in. This second card also gives the input
values for NREDU (a code specifying whether or not the imput
concentrations and times are in dimensionless form), MIT (maximum
number of iterations allowed during execution), NOB (number of
observed data points), NSKIP (a code indicating whether the
following example in the 1input data file 1is to be executed or

skipped—-—-a convenient feature to reduce editing of large input
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~ files), and NPRT (a code that allows one to omit imput concentration
data from the computer printout). After two information cards
(cards 3 and 4), the input file needs a list of names for the six
coefficients, BI(I), on card 5. Initial estimates for these coeffi-
cients are given on card 6. Table 1 specifies the exact sequence of
the names and estimates that must be provided. Card 7 1lists 6
indices, INDEX(I), that stipulate whether a certain coefficient is
to be held constant (INDEX = 0) or fitted to the data (INDEX = 1).
If a coefficient is assumed to be known, the initial estimate of
this coefficient on card 6 will remain unchanged during the least-
squares analysis. Card 8 lists CI (the initial concentration) and
CO (the inlet pulse concentration). Finally, the remaining cards
are used to enter the observed tracer concentration data as a
function of observed distances, x, and times, t (see Appendix B for
required formats).

Experimental results from laboratory soil columns are often
presented 1in reduced form as a function of the number of pore
volumes T (=vt/L) leached through the column. Dimensionless
effluent concentrations, ¢, for pulse-type injections are usually

expressed in the form

_ c(z,T) - Ci
c(z,T) = —c - [77]1
[} i
where c(z,T) is the observed concentration. For effluent data, c in
[77] represents a flux concentration. A similar reduction into
dimensionless concentrations may be carried out also for resident
concentration values when appropriate. As mentioned before, an
option in the program allows reduced data to be accepted as input.
By setting input code NREDU = 1, all concentrations are read 1in as
reduced values but times are still considered to be actual values.
Setting NREDU = 2 stipulates the input of reduced concentrations (E)
as well as reduced times (T). For Models 1-4, the value of t, in

the input file must then be replaced by its reduced counterpart T, =
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vtO/L. Finally, when NREDU = 2, the program does not allow v to be
fitted to the data, which means that the value of v must be
specified on input. For the stochastic models (MODE = 5-8), time
reduction may be achieved by substituting <v> for v, provided <v> is
then also fixed on input.

The value of L wused in defining several dimensionless
variables, in particular w for Models 3 and 4, is defined internally
in the program as the maximum value in the x—array. Because of the
scaled form of [41] and [42], it is apparent from the definitions of
the dimensionless variables that if values for z, T and T, are
entered in lieu of x, t and t , and provided v is fixed at unity,
then the coefficient that occupies the D-field is in actuality 1/P,
while the other coefficients (B and R) retain their original
meaning. The same implicit reduction can be applied also to Models
1l and 2 to obtain 1/P in lieu of D. More generally, any one of the
coefficients v, D, R, por Yy in Models 1-4 can be arbitrarily fixed
at unity on input while the other coefficients are entered as
usual. Because of the linearity of [11] and [21}, the input or
fitted parameters then take on the meaning v/a, D/a, R/a, u/a or y/a
where a 1s the actual value of the fixed coefficient. These
reductions of the input data can be imposed irrespective of the
value of NREDU and add more flexibility when applying the computer
code to different types of data sets.
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7. APPLICATIONS

Several examples have been run with CXTFIT to demonstrate its
accuracy and versatility. These include a number of hypothetical
examples used primarily to test the iaversion method as well as
several experimental data sets, thus 1illustrating practical
applications of the program.

The first example (la) simply calculates hypothetical
concentration distributions for a reactive solute exhibiting linear
equilibrium adsorption, zero-order production, and first-order
decay. The analysis is deterministic with medium coefficients v=25

cm day Y, D=100 cm’ day !, R = 2.5, 1=0.25 day ! and y=0.5 ug cm >

day—l. The initially solute-free medium (C;=0) is subjected to a
pulse input of C0=100|g cm_3 for a duration t, of 5 days. The
predicted resident concentrations for depths 0-100 cm at t=5 and 10
days were calculated by setting MIT=0 in the input file. The input
and output files are shown in Appendices C and D, respectively.
Results for example la are plotted in Figure 1.

In example 1lb, the cr(x,t) data from example la for both t=5
and 10 days were used as input to the nonlinear regressfion program,
thus providing a test of the parameter estimation method. The
parameters D, R, p and y were estimated from initial input estimates
of 1.0 for all coefficients. The pore water velocity v was assumed
to be known independently (at‘least one non-zero coefficient must be
known). The fitted parameter values were essentially equal to the
true values (Table 2), with residuals of the concentrations all
being less than the roundoff level of the input data (Appendix D).
Results of nearly the same accuracy were obtained when the inversion
was restricted to only the t=5 days data (example 1lc, Table 2).
Attempts to estimate t, in addition to the other four parameters
indicated a large plateau in the response surface. No convergence
was obtained with a stop criterion (STOPCR) of 0.0005 and with a
maximum number of trials with no residual decrease within each

iteration (MAXTRY) set at 50. A larger value for MAXTRY probably
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Table 2

*
. Comparison of fitted transport parameters for example 1.

Example D R " Y
la True values for cp 100.000 2.5000 .2500 .5000
1b 22 point fit to c, 100.062 2.4990 .2499 .4999
le 11 point fit to c, 100.280 2.5006 .2496 4971
ld 11 point fit to ce 85.6 2.52 .34 .76
le 11 point fit to cg 161.7 3.00 (.25) (.50)
*D in cn? day_l, uin day’l, y in ug em 3 day l; values in paren-
thesis were fixed on input.
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would have facilitated estimation of t, also. However, in most
cases t, will be known, rendering its estimation unnecessary.

Boundary conditions appropriate for the analysis of flux
concentrations have frequently been used to interpret data assumed
to represent resident concentratiouns. To evaluate the effect of
fitting the flux concentration solution to observed resident
concentration data, the parameters in Model 2 for cg were fitted to
the t=5 data for Cy- As shown by example 1d in Table 2, the fitted
coefficient values in this case do not compare well with the “"true"
values. With p and y fixed at their correct values, a two—parameter
fit greatly overestimated D and R (example le, Table 2). This over-
estimation 1s a characteristic occurrence when resident concentra-
tions are misintepreted as flux concentrations (Parker and van
Genuchten, 1984). The converse will be found when flux concentra-
tions are interpreted as resident concentrations.

Example 2a predicts hypothetical flux concentrations for the
two-site/two-region non-equilibrium model (Model 4) wusing as
1 p=1.5 cm? day™!, Rr=3.0, g=0.3
and w=2.5 (based on L=40 cm). A 2.5 day (t;) long pulse of

parameter values v=10 cm day

concentration C°=500 Hg cm_3 is applied to an initially solute-free
medium (C1=0)' Predicted concentrations at x=20 and 40 cm from O to
12 days are shown in Figure 2. In example 2b, these predicted
concentrations are used in the inversion program to estimate D, R,

2

t B and w , using as starting values for these coefficients 10 cm

s
d:y—l,.S.O, 1.0, 0.5 and 1.0, respectively. In 10 iterations the
program converged to the correct values within a relative error of
0.0001 (see Appendix D). Using the concentration data for only one
of the depths, the program failed to converge to the correct
parameter values when all five parameters were fitted. However, the
program converged correctly when t, was fixed and the remaining four
parameters were estimated from the smaller data sets.

The third example 18 used to analyze a column tracer

experiment reported by Parker (1984). The experiment was conducted
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Figure 2. Hypothetical and fitted flux concentration distributions
for deterministic two-region/two-site nonequilibrium model (example
2 using Model 4).

on a cylindrical column 52 mm in diameter, 190 mm long, filled with
a mixture of sand and a small amount of cement as a binding agent.
The column contained a straight 1.7 mm diameter "wormhole" passing
axially through the center of the medium. Effluent from the column,
subjected to steady saturated flow, was collected subsequent to the
addition of 0.65 pore volumes of a bromide tracer to an initially
Br-free pore solution. 1In total about 1.8 pore volumes of effluent
were collected. A similar experiment was performed on a replicate
column, but in this case the column was sectioned into 19 mm depth
intervals immediately following the addition of the bromide pulse.
The column sections were extracted to determine the Br resident
concentration distribution at the time of sectioning.

The bromide effluent curve (Fig. 3) is plotted in terms of

reduced concentrations versus reduced times or pore volumes. The
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Figure 3. Experimental bromide effluent curve for packed sand with
"wormhole”, and fitted curves for bulk continuum model (Model 2) and
two-region model (Model 4).

mean pore water velocity v determined from the measured hydraulic
flux (39.7 m daynl) and water content (0.371 cm3 cm—3) was 107 m
day'l. Assuming no bromide adsorption (positive or negative), R was
taken to be unity. Effluent concentrations and corresponding times
were entered in the program as reduced values E(T), while also a
reduced pulse duration T, was used in lieu of to (NREDU=2) .
Finally, because reduced variables are used and because y=1=0, we
may simply set Ci=0 and C,=1.

If the porous medium is viewed as a simple continuum, then
Model 2 for ¢¢ should be used to analyze the effluent data. In our
example only D is unknown. The fitted value for D (see example 3a,
Appendix D) was found to be 8745 m2 day_l. Alternatively, one may
view the bromide experiment as a two-region transport problem, in

which case Model 4 should be applied. With R=1, the values of



36

2 1

day™ ", 0.043 and
0.103, respectively. Figure 3 shows that Models 2 and 4 describe

D, B and w in this model were found to be 300 m

the experimental data with comparable accuracy. Hence, there is in
this case 1little advantage in adopting the two-region model with
three parameters instead of the much simpler bulk continuum model
with only one adjustable parameter.

The importance of distinguishing between resident and flux
concentrations may be evaluated by using the fitted value for D,
based on Model 2 for cg, to predict with Model 1 the resident
concentration distribution (cr) at the time the second column was

sectioned. These predicted values are compared in Figure 4 with the
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Figure 4. Experimental resident concentration distribution in
“wormhole” column and predicted distribution from Model 1 using D
fitted to the effluent data of Figure 3 with Model 2.
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measured resident values representing mean concentrations in each 19
mm section. The correspondence is very close except in the upper-
most section in immediate contact wth the influent solution. The
discepency here may be expected owing to assumptions implicit in the
macroscopic description of the boundary region at or near x=0
(Parker, 1984). 1In any case, this example emphasizes the importance
of distinguishing between resident and flux concentrations. The
data show that the reduced flux~averaged effluent concentration was
about 0.98 at the time the column was sectioned, while the resident
concentration in the column near the exit was only 0.02. Failure to
realize that the effluent concentration is not equal to the resident
concentration at the exit would make it impossible to fit D with
Model 1 to the effluent data using the measured value for the pore
water velocity. A two-parameter fit of Model 1 with variable v and
D would actually lead to an estimate for the pore-water velocity
that is about 1000 times greater than the measured value, thus
suggesting that a large fraction of the pore space was effectively
excluding the bromide tracer. This conclusion is unwarranted and
unnecessary when the transport model is chosen to correspond to the
proper solute detection mode.

Example 4 considers the movement of boron through Glendale
clay loam (Exp. 3-1 of van Genuchten, 1974). A boron tracer pulse
of duration t°=5.06 days and having a concentration of C =20 ug en”3
was leached through an initially solute-free 30 cm long column. The
measured pore water velocity was 38.5 cm day_l. Reduced concentra-
tion and times were used (NREDU=2); hence, T°=vt°/L was entered in
lieu of t, as a known input parameter for the pulse duration.
Assuming non-equilibrium adsorption and noting that flux concentra=-
tions must be used to describe effluent data, we employed Model 4 to
fit the coefficients D, R, B and w. The final parameter estimates
and the sum of squared residuals (SSQ) of the observed versus fitted
concentrations for two different sets of initial estimates (examples

4a,b) are shown in Table 3. Results of example 4a, which yielded
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the lowest SS8Q, are compared with the experimental data in Figure
5. Note that the initial estimates for example 4b yielded fitted
coefficient values with a higher SSQ using the currently set stop
criteria (STOPCR and MAXTRY). Cleariy, the program can converge to
local minima with erroneous final estimates. Critical to correct
and relatively rapid convergence is a good initial estimate of the
product BR. For negligible dispersion (D=0), this product is
equivalent to the number of pore volumes T at which the tracer
initially appears in the effluent (van Genuchten and Cleary, 1979).
From the experimental data in Figure 5, we may estimate the
product BR to be about 2.0 (initial boron breakthrough) to 3.0 (the
value of T at a reduced concentration of approximately 0.5). For
not too wild initial guesses for D and w, we always obtained
convergence to the final estimates of example 4a in Table 3 when the
initial estimates for B and R were such that 1.5 < BR < 4. For
other estimates, the program sometimes converged to the same
estimates, sometimes converged to estimates with higher SSQ-values,
or sometimes diverged. Consequently, a reasonable initial guess for

the product BR is essential when applying the two-site/two-region

Table 3. Fitted parameter values and assoclated residual SSQ's for

*
example 4 for two sets of initial estimates.

Example D R B w SsQ
4a. 1Initial values 2.00 10.00 .200 .200

Final values 47.7 4.30 .600 424 .053
4b. Initial values 1.0 1.00 .500 .200

Final values 216. 3.58 .564 14.2 .142

* Z
D in cm2 day 1; other parameters are dimensionless.
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Figure 5. Experimental and fitted boron effluent curves for

Glendale clay loam (example 4 using Model 4).

non-equilibrium model. We finally note that the fitted parameter
values of example 4a (Table 3) obtained here with a Romberg integra-
tion scheme are the same as those obtained previously with a 40-
point Gaussian quadrature scheme (van Genuchten, 1981).

Example 5 involves again a hypothetical case and dezls with
the stochastic reglonal transport model applied to a field subject
to a mean velocity <v> of 25 cm day_1 with a standard deviation for
the logarithmic probability density distribution (oln) of 1.37. The
initially solute-free medium (C;=0) is subjected to a uniform dose
of solute (Mo) of 10,000 ug cm_z, which for 6=0.5 yields the input
parameter SOLOAD = Mole = 20,000 jg em”2. We assume the inlet

3

solute concentration (Co) to be 1,000 ;g cm ° and take &=10 cm,

R=5.0 and 1=y=0.0. Figure 6 shows calculated concentration profiles
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(Model 4; MIT=0) from O to 500 cm and for t=1, 5 and 10 days
(example 5a). Using 30 input data points for the combined times and

initial guesses of 10 cm day™!

for <v> and unity for the other
parameters, the inversion program yielded estimates for <v>, €, R
and %n with a maximum error of 0.0001 from the correct values
(example 5b, Appendix D). The program converged to 1ncorrect
parameter values when in addition Mo/e was fitted to the data.
Execution terminated with parameter values fixed on a very flat

response surface with §8Q still large. In such cases it is
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sometimes possible to move off the plateau in the response surface
by decreasing STOPCR and increasing MAXTRY. In less troublesome
circumstances, greater computational efficiency will be obtained,
however, when STOPCR is relatively large and MAXTRY relatively small
(see also our comments on uniqueness problems in the previous
section).

The final example considers a case of fileld-scale stochastic
transport. Unfortunately, field measurements suitable for testing
and calibrating stochastic transport models are scarce. Jury et al.
(1982) reported areally-averaged concentrations over a 0.64 ha field
subjected to a bromide pulse of fixed duration and subsequently
leached under transient hydraulic conditions. The stochastic model
presented here does not strictly apply to tramsient conditions.
However, by invoking some approximate transformations of temporal
variables, the model can be extended in an approximate manner also
to transient conditions.

Let us define a time-averaged flux <{q>*, a time—averaged water

content <6>*, and a time-averaged pore water velocity <vw* as

follows:

1 tm

<* = [ <g>(1) dr [78]
m O
1 t:m

<o* = [ <ex(1) dt [79]
m O

con = S22 (50)
<>*

where <{q> and <0> respectively represent the actual time-dependent
areally-averaged fluxes and water contents over the time interval
t=0 to t  of interest. We assume <q>* and <6>* to be independent of
x. For <g>* this assumption implies that there are no fluid sources
or sinks in the flow region, while t, must be relatively large. For

<H*, the additional constraint of medium homogeneity in the x
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direction is implied. If these assumptions are not appropriate and
information regarding the variation of <g> and <6 with x is
available, an approximate transformation of the space coordinate may

be imposed in the manner of Bresler and Dagan (1981):

x* = -——(———<§“g:(:g> x [81)

where <v>*(x) is the temporally- and areally-averaged velocity at
distance x, while <<Kv>*(x)> represents the mean of <v>* over all
X. We will not impose the latter transformation but instead take
<v>* as counstant and calculate <q>* by means of a water balance at
x=0. Transformation of the time varilable itself 1is accomplished
with

[ <@(D) dt
T e (82]
<g>*

where the numerator represents the cumulative flux until time t. To
implement this model for temporally transformed data, we need to
estimate t* and <v>* instead of t and <v>. Averaging the data of
Jury et al. (1982) over a period of 100 days yields <q>*=5.9 mm
day'l. From <q>* and the reported values of the cumulative net
amount of applied water versus areally-averaged concentrations, we
may calculate the times t* that correspond to these measured
concentrations. Since <6>* is not known, <vD¥* cannot be calculated
directly. However, a reasonable first guess of <v>* for the
inversion program can be obtained by using <8>#%*=0.2. Application of
the tracer was accomplished by means of a uniform 10-mm irrigation
over the entire field. By regarding the measured concentrations as
resident values, we may use Model 5 to analyze the data. The input
value of t, for that purpose was replaced by the transformed pulse
time tg , which according to [82] equals 10/<q>*=1.69 days. We
further assume R=1.0 and y=y=0.0 for bromide tramsport. The program

can now be used to calculate <v>*, e and %
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Using 10 values for 6r that were estimated from observations
at x=30 cm from t*=0 to 50 days, the fitted coefficient values were
found to be <v>*=30.5 mm day ', e=1.0 mm and 01,=0-800 (example 6a,
Table 4). The results indicate that the estimated value of & inclu-
des zero within the 95% confidence limits. To further investigate
the 1implications of this uncertainty in ;he estimation of local
dispersivity, we fitted <v>* and %, tO the data while fixing € at
various values. The results (examples 6b—-6e, Table 4) show that the
fitted values of <v>* and o), are little affected by variations in €
between 0.1 and 10.0 mm. Much larger values of ¢, however, cause
$SQ to increase while %n decreases to compensate for the high local
dispersion. It is apparent that 1local-scale dispersion is small
compared to the effects of areal velocity variations on resultant
field-scale distributions. Noting that the program requires e>0, it
is therefore justifiable to fix € in this 1instance at some small
value. If the stochastic model 1s forced to degenerate to the
deterministic monocontinuum model by fixing 01n=0 (example 6f, Table
4), the best fit for ¢ is 123 mm, yielding a markedly higher SSQ

than when °ln¢ 0.

*
Table 4. Fitted model parameters for example 6.

Example € <vo* %ln s$SQ

6a 1.0 % 227. 30.5 421.0 .800  .943 .0005177
6b (1) 30.5 + 1.8 .803 t .060 .0005182
6c a.) 30.5 + 1.8 .800 % .060 .0005177
6d (10.) 29.7 + 1.7 .763 t .063 .0005182
6e (100.) 24.7 £ 1.6 .370 + .143 .00056
6f 123. + 22. 23.6 + 1.4 (0.0) .00061

* -
values + the standard error; units of ¢ in mm and <v>* in mm day 1;

values in parenthesis were fixed on input.
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Observed and fitted concentration-time curves for the 30 cm
depth are plotted in Figure 7a. Using the coefficient values fitted
to the 30 cm depth data (example 6a), er(t*) distributions were
calculated for depths of 60 cm and 90 cm. Figures 7b and 7c compare
these predicted concentrations with the measured values. The
tendency for the predicted time of waximum concentration to lag
somewhat behind the measured peak time may be due to a variation in
<6> and hence in <v> with depth in contrast to the homogeneity
assumption invoked in our analysis. Implementation of a coordinate
transformation, as previously mentioned, may alleviate this
problem. On the other hand, the shift in peak concentration could
be attributable also to uncertainties in the measured ér—values.
Owing to the rather small sampling size of 14 for each concentration
value, Jury et al. (1982) indicated experimental errors in Gr of
about 0.05 C, units at the 95% confidence level. A more stringent
test of this or any other stochastic transport model will require a

considerably greater sampling density within the transport region.

-+

Figure 7. Experimental areally-averaged concentrations & at three
depths as a function of transformed time t* for bromide tranmsport in
a field soil. (a) Data for 30 cm depth and fitted curve using Model
S; (b) data for 60 cm depth and predicted curve using parameter
values fitted to the 30 cm depth data; (c) same as b for the 90 cm
depth data.
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8. SUMMARY AND CONCLUSIONS

The least-squares inversion method discussed in this report
provides a convenient, efficient and accurate means of fitting
various transport parameters to observed spatial and/or temporal
concentration distributions. Both equilibrium and two-site/two-
region type non-equilibrium transport models can be implemented in
the program. The linear equilibrium adsorption model also includes
terms accounting for zero-order production and/or first-order decay.
In addition, a stochastic model is described that can be applied to
field-scale problems involving log-normally distributed pore water
velocity distributionms. This model also includes provisions for
zero- and first-order production/decay processes. All models are
formulated in terms of both flux-averaged concentrations (applicable
to column effluent curves) and volume-averaged concentrations
(applicable to in situ or resident concentrations). Several example
problems illustrating practical applications of the 1inversion
program are discussed in detail.
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10. APPENDIX A. Ligt of the most significant variables in CXTFIT
(units in brackets, L~ is dimensionless).

Variable Definition

BETA Dimensionless coefficient B for Models 3 and 4 [L°].

BETR Value of B/R in Models 3 and 4 [L°].

B(I) Vector containing estimates of the coefficients:
v,D,R,t_,u and Y for Models 1 and 2,
v,D,R,to,B and w for Models 3 and 4,
<v>,e,R,to,u,Y and o n for Models 5 and 6, or
<v>,e,R,M°/6,u,Y and %n for Models 7 and 8.

BI(I) Vector of coefficient names.

C(IL) Concentratio§3for I-th observation corresponding to X(I)
and T(I) [ML °].

Cl Uniform initial concentration, C; [ML-3].

Co Concentration of the inlet solution, C [ML_3].

D Dispersion coefficient [L2T 1.

DISP Dispersivity e for Models 5-8 (L].

DR Value of D/R [L?T}].

INDEX(I) Index for each coefficient. If INDEX(I) = O, the coeffi-~
cient B(I) is known and kept constant; if INDEX(I) = 1,
the coefficient is assumed to be unknown and fitted to
the data.

MAXTRY Maximum number of trials allowed within an iteration to

find new parameter values that decrease SSQ (currently
set at 50 in the program).

51
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MIT

MODE

NC

NDATA

NIT

NOB

NP

NPRNT

NREDU

NSKIP

OMEGA

RXO0

RXOR

RX1

RX1R

SDLN

Maximum number of iterations allowed in the least-squares
analysis. If MIT=0, the least-squares inversion part is
bypassed and the program calculates and prints concentra-
tions for given 1input values of x, t and the different
parameters; dummy values of C(I) and INDEX(I) are. then
still read in but not used in the program.

Model number specifying type of transport model and
boundary conditions to be used (see Table 1 in text).

Number of cases considered.

Data input code. If NDATA=1l, new cards are read in for
that case, if NDATA=0, all or part of the data from the
previous example are used for the new problem.

Iteration number in least-squares analysis.

Number of observations (cannot exceed 90 with currently
dimensioned arrays).

Number of variable parameters to be fitted to the data.

Output print code. If NPRNT=1, the input c(x,t) array is
printed out; NPRNT=0 suppresses this printing.

Data input code. If NREDU=0, input concentrations and
times are not reduced. If NREDU=1l, only the input concen-
trations are reduced. If NREDU=2, input concentrations
and times are both assumed to be dimensionless.

Input file execution code. If NSKIP=0, the problem 1is
executed; if NSKIP#0, the problem is read im but not
executed.

Dimensionless coefficient w for Models 3 and 4 [L°].
Retardation factor [L%].

Zero-order rate consta, £, Y (positive for production,
negative for decay) [ML T "].

Value of y/R [MLTOT !

].
First-order decay constant, y [T—I].
Value of w/R [T !].

Value of 01, in Models 5-8.



SOLOAD

STOPCR

T(I)

TITLE

TO

VLNM
VR

X(I)

XL
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2

Value of M /6 in Models 7 and 8 [(ML™°].

Stop criterion. The curve-fitting process stops when the
relative change in the ratio of all coefficients becomes
less than STOPCR (currently set to .0005 in the program).

Time corresponding to the I-th observed concentration
value [T}.

Vector containing information of title cards.
Pulse duration for Models 1-6.

Pore water velocity, v [L'l‘—1

B
Value of u,  in Models 5-8.
Value of v/R [LT_I]

Distance from source corresponding to the I~th observed
concentration value [L].

Maximum value L of X(I) array ([L].

Dimensionless distance, x/L [L°].
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APPENDIX B.

Data input instructions.

Card Columns Format Variable Comments

1 1-10 110 NC Number of cases considered.
The remaining cards are read in
for each case. If NDATA=0 on
card 2, data cards 9, etc. are
not needed for that particular
case.

2 1-10 110 MODE Model number. See Table 1 of
text for explanation.

2 11-20 110 NDATA New data input code. See Ap-
pendix A for explanation.

2 21-30 110 NREDU Reduced data input code. See
Appendix A for explanation.

2 31-40 110 MIT Maximum number of iterationms.
See Appendix A for explanation.

2 41-50 110 NOB Number of observations. See
Appendix A for explanation.

2 51-60 110 NSKIP Input execution code. See Ap-
pendix A for explanation.

2 61-70 110 NPRNT Output print code. See Appen—
dix A for explanation.

3 1-80 20A4 TITLE Information card 1.

4 1-80 20A4 TITLE Information card 2.

5 5-10 Ab4,A2 BI(1) Name of each coefficient B(I).

5 15-20 A4, A2 BI(2) Coefficlent 7 applies only for

5 25-30 A4-A2 BI(3) Models 5-8. See Appendix A and

5 35-40 A4 A2 BI(4) Table 1 of text for additional

5 45-50 A4, A2 BI(5) explanation.

5 55-60 A4,A2 BI(6)

5 65-70 A4 A2 BI(7)

54



oo,

SN N N N

1-10
11-20
21-30
31-40
41-50
51-60
61-70

1-10
11-20
21-30
31-40
41-50
51-60
61-70

1-10
11-20

11-20

21-30

F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0

110
110
110
110
I10
I10
I10

F10.0
F10.0

F10.0

F10.0

F10.0

B(L)
B(2)
B(3)
B(4)
B(5)
B(6)
B(7)

INDEX(1)
INDEX(2)
INDEX(3)
INDEX(4)
INDEX(5)
INDEX(6)
INDEX(7)

CI
co

(1)
X(1)

T(1)

55

Initial value for each coeffi-
cient. See Table 1 of text.

Index for each coefficient.
See Appendix A and text for
explanation.

Initial concentration.
Influent concentration.

Value of the Ith observed con-
entration (blank for MIT=0).
Distance from source for obser—
vation I.

Elapsed time for observation I.

Card 9 is repeated NOB times.
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12. APPENDIX C.

Input files for selected examples
discussed in text.
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1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

7
1 1 0 0 22 0 0
EX.1A: HYPOTHETICAL CASE OF EQUILIBRIUM ADSORPTION
(UNITS: CENTIMETERS, DAYS, MICROGRAMS)
\ 2y D..... R..... T0.... RX1... RXO0...
25.0 100.0 2.5 5.0 0.25 0.5
0 0 0 0 0 0
0.0 100.0
0.0 5.0
10.0 5.0
20.0 5.0
30.0 5.0
40.0 5.0
50.0 5.0
60.0 5.0
70.0 5.0
80.0 5.0
90.0 5.0
25.0 5.0
0.0 10.0
10.0 10.0
20.0 10.0
30.0 10.0
40.0 10.0
50.0 10.0
60.0 10.0
70.0 10.0
80.0 10.0
90.0 10.0
100.0 10.0
1 1 0 30 11 0 0
EX.1C: HYPOTHETICAL CASE OF EQUILIBRIUM ADSORPTION
FIT TO EX.1A DATA (UNITS: CENTIMETERS, DAYS, MICROGRAMS)
V.o.o... D..... R..... TO.... RX1... RXO0. ..
25.0 1.0 1.0 5.0 1.0 1.0
0 1 1 0 1 1
0.0 100.0
96.23 0.0 5.0
86.84U 10.0 5.0
76.73 20.0 5.0
64.66 30.0 5.0
50.24 40.0 5.0
34.71 50.0 5.0
20.75 60.0 5.0
10.63 70.0 5.0
L.75 80.0 5.0
2.08 90.0 5.0
1.13 100.0 5.0
1 0 30 30 0 0

u
EX.2B: HYPOTHETICAL CASE OF NONEQUILIBRiUM TRANSPORT
(UNITS: CENTIMETERS, DAYS, MICROGRAMS)



QOO0 O0O0O0C0O0O00000

40.0
4o.0
40.0
Lo.0
40.0
4o.0

1

s e

——
BNV EFWN=S =000 ONOCONOAVNEWN =000 0
NOOOOOCOOOQOOVUVOOOAOAENOCOOOOOOOOOWVOONEN

10.
12.

PULSE.
1.0
1

30

BETA..
0.5
1

14

OMEGA.

EX.3A: BROMIDE EFFLUENT FROM 'WORMHOLE' COLUMN

(UNITS: METERS, DAYS, ARBITRARY MASS UNITS)

COO0OO0QCOOOOO0OO0O0O
-
\le]

2242430000000 0C00

.24h
. 409

.751

PULSE.
0.65
0

RX1...
6.0
0

RXO. .
0.

1.0

1

0
0

59



60

<>, ..

1

0.0
1
0.0

68.14

15.26
2

\0

FOQOOQOOO

1

2

30

30

EX.4A: BORON EFFLUENT FROM GLENDALE CLAY LOAM
(UNITS: CENTIMETERS, DAYS, MICROGRAMS)

D....
2

w
o
S~ O000O0CO00OO0OOO0OOOOCOO0O0OOOOOOOCOCOO00OO O

10.

PULSE.
6.49
0

30

BETA. .
0.2
1

30

OMEGA.
0.2
1

0

EX.5B: HYPOTHETICAL REG!ONAL TRANSPORT PROBLEM

FIT TO EX.5A (UNITS: CENTIMETERS, DAYS, MICROGRAMS)

DISP..
1.0

1
1000.0
10.00
25.00
50.00
75.00
100.00
150.00
200.00
300.00
400.00
500.00
10.00

L 5 S S S e . I Qg )
. .

.0

.00
.00

.00
.00
.00
.00

.00
.00
.00

SOLOAD
20000.0
0

RX1...
0.0
0

RXO. ..
0.0
0

SDLN. .
1.0
1



41.89
4.9
6.85

1.39
0.65
0o.21
0.09
0.04
79.38
45.49
20.94
11,34
6.86
3.07
1.63
0.62
0.29
0.16

25.00
50.00
75.00
100.00
150.00
200.00
300.00
400.00
500.00
10.00
25.00
50.00
75.00
100.00
150.00
200.00
300.00
400.00
500.0?

ALAGRS A RS R AN L]

QOOOO0O0O
COO0COO0O0O00O

5.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

1

30

10

0

61

5
EX.6A: FIELD-SCALE BROMIDE MOVEMENT (JURY ET AL.,1982)

<V>*_,
25.0
1

0.0
.062
.076
.059
.038
.04
.007
.004
.003
.001
.000

COOOCOO0O0OO0O

(UNITS: MILIMETERS, DAYS, ARBITRARY MASS~--REDUCED C)

DISP..
100.0
1

R

PULSE.
1.69
0

RX1...
0.0
0

RX0...
0.0
0

SDLN. .
1.0
1
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13. APPENDIX D

Output files for selected examples
discussed in text.
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*

*
*
*
*
#
*
»
»*
*
*

ONE-DIMENS IONAL CONVECTION-DISPERSION E£Q. SOLUTION

DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FOR PULSE INJECTION
WITH FIRST- AND ZERO-ORDER PRODUCTION AND DECAY

SOLUTION FOR RESIDENT CONCENTRATIONS

EX.1A: HYPOTHETICAL CASE OF EQUILIBR!UM ADSORPTION

(UNITS: CENTIMETERS, DAYS, MICROGRAMS)

INITIAL VALUES OF COEFFICIENTS

10

INITIAL VALUE

. 25.0000
. 100. 0000
. 2.5000
. 5.0000
. 0.2500
. 0.5000

0.0
. 100.0000

D1 STANCE
0.0
10.0000
20.0000
30.0000
40.0000
50.0000
60.0000
70.0000
80.0000
90.0000
25.0000
0.0 10
10.0000 10
20.0000 10
30.0000 10
40.0000 10
50.0000 10
60.0000 10
70.0000 10
80.0000 10
90.0000 10
100.0000 10

VAT T A —

RESULTS FOR INITIAL COEFFICIENT VALUES
ME

. 0000
.0000
.0000
. 0000
.0000
.0000
. 0000
.0000
. 0000
. 0000
.0000
. 0000
.0000
.0000
.0000
. 0000
. 0000
.0000
.0000
. 0000
.0000
. 0000

I 036 HE I A0S B 60 O I 0 U I HE I 6 IS 20 I I 30 T R0

CONCENTRATION
96.2355
86.8428
76.7266
64.6646
50.2391
34.7099
20.7448
10.6034

4.7493

2.0823

0.9998

0.2022

1.0973

3.4644

8.3961

16. 1408

25.2015

32.6311

35.9173

34.4879

29.5869

23.1039

A HEAE I A0 I A I A0 0TI J6 T IS T A0 A0 S0 96 63602 06 6 A
#*

*
*
*
L4
*
»
*
*
*
*
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**********************************#*******#*******##**“**#****#*****************#

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-L INEAR LEAST=-SQUARES ANALYSIS

DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FOR PULSE INJECTION
WITH FIRST- AND ZERO-ORDER PRODUCTION AND DECAY
SOLUTION FOR RESIDENT CONCENTRATIONS

EX.1C: HYPOTHETICAL CASE OF EQUILIBRIUM ADSORPTION

FIT TO EX.1A DATA (UNITS: CENTIMETERS, DAYS, MICROGRAMS)

6 WA NI W WIS H I 62 36 06 0 200 3 0N 630

NITIAL VALUES OF COEFFICIENTS

ORRELAT{ON MATRIX

1 2
1 1.0000
2 0.8601 1.0000
3 -0.9592 ~0.8974
4 -0.6091 -0.2u490

NAME INITIAL VALUE

e 25.0000

[ 1.0000

......... 1.0000

O........ 5.0000

Xl....... 1.0000

X0....... 1.0000

levieoen. 0.0

[ P 100.0000

TERATION $3Q D.....
0 3917.13832 1.00000
1 3912.71790 1.00000
2 458.36066 9.82327
3 90.39628 25.50612
4 16.03210 59.46360
5 0.81370 89.70647
6 0.00828 99.49115
7 0.00039 100.25669
8 0.00038 100.27995
9 0.00038 100.28036

1.0000
0.6051

NONNNNN = =D
&
w
w
\O
©

1.0000

COO00OOCOOCO =

.00000
.00000
. 39060
RARNA
.3u172
.27487
.25169
.24964
.24960
.24960

SQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99999997

RX0. ..

OCOOCOOCO =N =

.00000
.00000
.85959
.09147
.54057
.481%51
.49078
49666
49705
. 49706

#*

*
*
*
L
»
#*
*
»*
*
#



VARIABLE

—~OWVE~NONVNEWN—=Z

-— b

FON =

NAME

DISTANCE

0.
10.
20.

0
0000
0000

.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000

VALUE
100.28036
2.50062
0.24960
0.49706

TIME

. 0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

AURGECRG RERGRG AN, RS RS RN ]

--------------------------- ORDERED

—
WVNONAOE == 2Z

-

DISTANCE

70.
100.
L40.
20.
0.
30.
50.
10.
90.
60.
80.

0000
0000
0000
0000
0

0000
0000
0000
0000
0000
0000

TIME

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

AGRGRSAS RS G RGN, RC, A AN, |

S.E.COEFF.
0.15469
0.00066
0.00030
0.00413

ORDERED BY COMPUTER INPUT

T-VALUE
648.29
3768.48
840.28
120. 34

CONCENTRATION

0BS

.2300
. 8400
.7300
.6600
.2400
. 7100
. 7500
.6300
. 7500
.0800
.1300

RESIDUAL=====c e mcccc e e e e

FITTED
96.2293
86.8437
76.7272
64.6615
50.2360
34.7133
20.7558
10.6163
4.7578
2.0848
1.1250

CONCENTRAT I ON

0BS

.6300
.1300
.2400
.7300
.2300
.6600
. 7100
. 8400
.0800
. 7500
. 7500

FITTED
10.6163
1.1250
50.2360
76.7272
96.2293
64.6615
34,7133
86.8u437
2.0848
20.7558
4.7578

95% CONFIDENCE LIMITS
LOWER

99.91460
2.49905
0.24890
0.48730

UPPER

100.64612
2.50219
0.25031
0.50683

99



**********************************************************************************

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ.
NON-LINEAR LEAST-SQUARES ANALYSIS

SOLUTION

DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR
INJECTION WITH NO PRODUCTION OR DECAY

PULSE-TYPE

EX.2B: HYPOTHETICAL CASE OF NONEQUILI!BRIUM TRANSPORT

(UNITS: CENTIMETERS, DAYS, MICROGRAMS)

#*
#
#*
s
*
# SOLUTION FOR FLUX CONCENTRATIONS
*
#
»
*
*

************************************1('*******************************************

INITIAL VALUES OF COEFFICIENTS

INITIAL VALUE

0.0000
1.0000
1.0000
1.0000
0.5000
1.0000
0.0

0.0000

I TERATION S$5Q

0 246022,
1 128996.
2 58793.
3 30511
4 22294,
5 10681
6 6515.
7 L065.
8 81
9 3.
0

1

2

0.
0.
0.

36623
36620
65999

.23505

31832

.56125

38259
76046

. 72203

40572
58235
57551
57547

— - )
FEHEFENNDOONXO=O

NNV WWNRNNDNDN ==

PULSE.

PRONRNDNNNNONNOND = -

.00000
.03430
. 71952
.21464
.03889
. 15505
.15037
.50670
.51254
.49972
.49870
. 49853
.49853

COO0O0O0OCOCOOO0O0OC

*
*
*
*
#
#*
*
*
*
*
*
*

OMEGA.

NN NOdONW =

.00000
. 35233
.80566
L77231
. 38396
. 79992
.61625
. 42405
.49950
51777
.51109
.51090
.51088

L9



CORRELATION MATRIX

1 2 3 4 5
1 1.0000
2 0.3155 1.0000
3 0.2718 0.7586 1.0000
4  0.4293 -0.6260 -0.6191 1.0000
5 =-0.6169 -0.2879 -0.0743 -0.3728 1.0000

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99999404

NON~LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

95% CONFIDENCE LIMITS

VARIABLE NAME VALUE S.E.COEFF. T-VALUE LOWER UPPER
1 D..... L4.97406 0.03742 132.92 4.89698 5.05113
2 R..... 2.99811 0.00270 1111.47 2.99256 3.00367
3 PULSE. 2.49853 0.00138 1806.39 2.49568 2.50138
4 BETA. . 0.29749 0.00034 884.54 0.29680 0.29819
5 OMEGA. 2.51088 0.00223 1124.95 2.50628 2.51548

----------------------- ORDERED BY COMPUTER INPUT-====-cm=ccmmaac—aeomaon

89

CONCENTRAT ION RES1-

NO DISTANCE TIME 0BS FITTED DUAL

1 20.0000 0.2000 0.0 0.0 0.0

2 20.0000 0.4000 0.0 0.0 0.0

3 20.0000 0.6000 0.0 0.0001 =-0.0001
4 20.0000 0.8000 0.0400 0.0441 -0.0041
5 20.0000 1.0000 1.3600 1.4077 -0.0477
6 20.0000 1.5000 49,9500 49.7093 0.2407
7 20.0000 2.0000 134,2500 134, 4251 -0.1751
8 20.0000 3.0000 206.4900 206.3964 0.0936
9 20.0000 4.0000 198.7600 198.7150 0.0450
10 20.0000 5.0000 105.2500 105.7654 -0.5154
1 20.0000 6.0000 89.1200 89.0365 0.0835
12 20.0000 7.0000 77.6300 77.5696 0.0604
13 20,0000 8.0000 67.2500 67.2064 0.0436
14 20.0000 10.0000 49,7000 49.6825 0.0175
15 20.0000 12.0000 36.1200 36.1054 0.0146
16 40.0000 0.2000 0.0 0.0 0.0

17 40.0000 0.4000 0.0 0.0 0.0

18 40.0000 0.6000 0.0 0.0 0.0

19 40.0000 0.8000 0.0 0.0 0.0



20 40.0000 1.0000 0.0 0.0 0.0
21 40.0000 1.5000 0.0 0.0000 ~0.0000
22 40.0000 2.0000 0.0100 0.0164 -0.0064
23 40.0000 3.0000 11.6400 11.8712 -0.2312
2y 40.0000 4.0000 56.5700 56.4797 0.0903
25 40.0000 5.0000 90.5300 90.7646 -0.2346
26 40.0000 6.0000 90.0900 89.9546 0.1354
27 40.0000 7.0000 80. 4400 80.4107 0.0293
28 40.0000 8.0000 78.7500 78.57717 0.1723
29 40.0000 10.0000 73.3800 73.2438 0.1362
30 40.0000 12,0000 65.0800 64.9753 0.1047
--------------------------- ORDERED BY RESIDUAL=-==-~e-cccnccccccorcroacauax
CONCENTRAT |ON RES |~
NO DISTANCE TIME oBS FITTED DUAL
6 20.0000 1.5000 49.9500 49.7093 0.2407
28 40.0000 8.0000 78.7500 78.5777 0.1723
29 40.0000 10.0000 73.3800 73.2438 0.1362
26 40.0000 6.0000 90.0900 89.95u46 0.1354
30 40.0000 12,0000 65.0800 64.9753 0.1047
8 20,0000 3.0000 206.4900 206.3964 0.0936
24 40.0000 4.0000 56.5700 56.4797 0.0903
1 20.0000 6.0000 89.1200 89.0365 0.0835
12 20.0000 7.0000 77.6300 77.5696 0.0604
9 20.0000 4.0000 198.7600 198.7150 0.0450
13 20.0000 8.0000 67.2500 67.2064 0.0436
27 40.0000 7.0000 80. 4400 80.4107 0.0293
0 20.0000 10.0000 49.7000 49.6825 0.0175
15 20.0000 -12.0000 36.1200 36.1054 0.0146
1 20.0000 0.2000 0.0 0.0 0.0
2 20.0000 0.4000 0.0 0.0 0.0
16 40.0000 0.2000 0.0 0.0 0.0
17 40.0000 0.4000 0.0 0.0 0.0
18 40.0000 0.6000 0.0 0.0 0.0
19 40.0000 0.8000 0.0 0.0 0.0
20 40.0000 1.0000 0.0 0.0 0.0
21 40.0000 1.5000 0.0 0.0000 =0.0000
3 20.0000 0.6000 0.0 0.0001 -0.0001
4 20.0000 0.8000 0.0400 0.0441 -0.0041
22 40,0000 2.0000 0.0100 0.0164 -0.0064
5 20.0000 1.0000 1.3600 1.4077 -0.0477
7 20.0000 2.0000 134.2500 134.4251 -0.1751
23 40.0000 3.0000 11.6400 11.8712 =0.2312
25 40.0000 5.0000 90.5300 90.7646 -0.2346

10 20.0000 5.0000 105.2500 105.7654 -0.5154

69



AW N A H I IR I W NN H W W NN NN AN RN H N RN RN RN NN

*
* ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION #
* NON-LINEAR LEAST-SQUARES ANALYSIS *
* *
# DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FOR PULSE INJECTION #
* WITH FIRST- AND ZERO-ORDER PRODUCTION AND DECAY *
* SOLUTION FOR FLUX CONCENTRATIONS #
* REDUCED CONCENTRATION AND TIME DATA *
* »*
* EX.3A: BROMIDE EFFLUENT FROM 'WORMHOLE' COLUMN #
* (UNITS: METERS, DAYS, ARBITRARY MASS UNITS) #
* #
WA He W W HFE AW WIS N R M I B I M NN M I NN

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE

Veeeeooonn 107.0000

D......... 10.0000

Rooooenenn 1.0000

PULSE..... 0.6500

RX1....... 6.0

RX0....... 0.0

Clo....... 0.0

Co........ 1.0000

I TERAT I|ON $SQ D.....
0 4.,10659 10.00000
1 2.46778 37.23245
2 1.41558 123.82341
3 0.64858 400.18590
4 0.19115 1229.76741
5 0.04893 2937.47280
6 0.01575 5485 .46972
7 0.01076 7779.78289
8 0.01048 8660.86768
9 0.01048 8744.04483
10 0.01048 8745.07988

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99683340

0L



NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

95% CONFIDENCE LIMITS

VARIABLE NAME VALUE S.E.COEFF, LOWER UPPER
1 D..... 8745.07988 1786.53980 4885.38692 12604.77285

----------------------- ORDERED BY COMPUTER INPUT========mm=mcoecacaaonoe

CONCENTRATION RESI-
NO DISTANCE TIME 0BS FITTED DUAL
1 0.1900 0.0300 0.8060 0.8449 -0.0389
2 0.1900 0.1470 0.9420 0.9302 0.0118
3 0.1900 0.2720 0.9650 0.9490 0.0160
4 0.1900 0.4100 0.9600 0.9586 0.0014
5 0.1900 0.5580 0.9800 0.9647 0.0153
6 0.1900 0.6130 0.8820 0.9664 =0.0844y
7 0.1900 0.6620 0.1850 0.2112 -0.0262
8 0.1900 0.7980 0.0226 0.04h02 -0.0176
9 0.1900 0.9490 0.0101 0.0218 -0.0117
10 0.1900 1.0930 0.0077 0.0148 -0.0071
LR 0.1900 1.2440 0.0064 0.0109 -0.0045
12 0.1900 1.4090 0.0057 0.0083 ~0.0026
13 0.1900 1.5780 0.0054 0.0066 -0.0012
14 0.1900 1.7510 0.0050 0.0054 ~0.0004
L T e adataiada bt ORDERED BY RESIDUAL-=--~--+----vmecrccccacman .-
CONCENTRAT ION RESI| -
NO DISTANCE TIME 0oBS FITTED DUAL
3 0.1900 0.2720 0.9650 0.9490 0.0160
5 0.1900 0.5580 0.9800 0.9647 0.0153
2 0.1900 0.1470 0.9420 0.9302 0.0118
b4 0.1900 0.4100 0.9600 0.9586 0.0014
4 0.1900 1.7510 0.0050 0.0054 =0.0004
13 0.1900 1.5780 0.0054 0.0066 -0.0012
12 0.1900 1.4090 0.0057 0.0083 -0.0026
1 0.1900 1.24490 0.0064 0.0109 ~-0.0045
10 0.1900 1.0930 0.0077 0.0148 -0.0071
9 0.1900 0.9490 0.0101 0.0218 -0.0117
8 0.1900 0.7980 0.0226 0.0402 -0.0176
7 0.1900 0.6620 0.1850 0.2112 -0.0262
1 0.1900 0.0300 0.8060 0.8449 -0.0389
6 0.1900 0.6130 0.8820 0.9664 -0.0844

1L



F MBI I NN T I I I I I I H NI NI I I I NN NI IR MRS NH
*

ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-L INEAR LEAST-SQUARES ANALYSIS

»*
*
*
DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBRIUM MODEL FOR *
PULSE-TYPE INJECTION WITH NO PRODUCTION OR DECAY *
SOLUTION FOR FLUX CONCENTRATIONS *
REDUCED CONCENTRATION AND TIME DATA *
*
*
*
*
*

EX.4A: BORON EFFLUENT FROM GLENDALE CLAY LOAM
{UNITS: CENTIMETERS, DAYS, MICROGRAMS)

FEXEFFETXFETEFXF %

Fe - HE I I I I B W W A I BN DI I I I I DI HE 3 I I I W AN NN

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE

Veeeooontn 38.5000

3 J 2.0000

L 10.0000

PULSE..... 6.4900

BETA...... 0.2000

OMEGA..... 0.2000

Clto..ouvns 0.0 °

CO........ 20.0000

I TERATION $8Q D..... R..... BETA.. OMEGA.
0 1.86497 2.00000 10.00000 0.20000 0.20000
1 0.89540 5.55891 8.09839 0.24822 0.44224
2 0.41722 15.45646 7.03675 0.30592 0.51867
3 0.20896 33.01378 5.60759 0.40860 0.44036
4 0.19442 48.25238 3.91843 0.57399 0.41148
5 0.05591 60.59524 4.26294 0.60u434 0.40417
6 0.05290 48.80769 4.28093 0.59715 0.41627

NO FURTHER DECREASE IN SSQ OBTAINED AFTER 50 TRIALS

[44



CORRELATION MATRIX

1 2
1 1.0000
2 0.0834 1.0000
3 0.5889 ~0.6561
4 -0.7262 -0.3436

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.98139377

NON-LINEAR LEAST SQUARES ANALYSIS,

1.0000
-0.4080

1.0000

FINAL RESULTS

VAR | ABLE NAME
1 D.....
2 R.....
3 BETA
4 OMEGA
NO DISTANCE
1 30.0000 1
2 30.0000 1
3 30.0000 2
L 30.0000 2
5 30.0000 2
6 30.0000 2
7 30.0000 2
8 30.0000 3
9 30.0000 3
10 30.0000 4
1 30.0000 u
12 30.0000 5
13 30.0000 6
4 30.0000 6
15 30.0000 7
16 30.0000 7
17 30.0000 8
18 30.0000 8
19 30.0000 8
20 30.0000 8

VALUE
48.80769
4.28093
0.59715
0.41627

ORDERED BY COMPUTER INPUT========w-~

TIME
.8000
.9500
. 1000
.2500
. 4000
. 6000
.8500
. 1500
.5000
.0000
. 6000
.3000
.0000
. 7000
.3000
. 7500
.0000
.2500
. 5500
.9000

[efefololalofololoalafolofaloYaleto oY el

S.E.COEFF, T-VALUE
13.39505 3.64
0.22611 18.93
0.03308 18.05
0.09013 4.62

CONCENTRAT | ON

OBS FITTED
.0150 0.1035
.0750 0.1558
.1700 0.2152
.2650 0.2779
. 3400 0.3406
.4300 0.4195
.5350 0.5053
.6200 0.5862
.6870 0.6536
. 7380 0.7115
L7770 0.7574
.8190 0.7927
. 8520 0.8198
. 8800 0.8427
.8820 0.8599
.8520 0.864Y4
.7760 0.8445
.6990 0.7922
.6210 0.6911
.5270 0.5524

95% CONFIDENCE LIMITS

LOWER UPPER
21.27210 76.34327
3.81611 4.7u4574
0.52914 0.66516
0.23099 0.60156

“ 19101
OCOQOCOOQOOCO0oO0O0DOOO
o
w
~
w
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21 30.0000 9.3000 0.4330 0.4121 0.0209
22 30.0000 9.8000 0.3570 0.2934 0.0636
23 30.0000 10.5000 0.2690 0.2121 0.0569
2y 30.0000 11.5000 0.1860 0.1584 0.0276
25 30.0000 12.7000 0.1330 0.1238 0.0092
26 30.0000 14.0000 0.0900 0.0964 -0.0064
27 30.0000 15.5000 0.0540 0.0723 -0.0183
28 30.0000 17.0000 0.0400 0.0541 -0.0141
29 30.0000 18.5000 0.0290 0.0405 -0.0115
30 30.0000 20.0000 0.0250 0.0303 -0.0053
--------------------------- ORDERED BY RESIDUAL-==-====mm=m=emaoo—=ocoaeoao-
CONCENTRAT | ON RES |-
NO DISTANCE TIME 0BS FITTED DUAL
22 30.0000 9.8000 0.3570 0.2934 0.0636
23 30,0000 10.5000 0.2690 0.2121 0.0569
14 30.0000 6.7000 0.8800 0.8427 0.0373
8 30,0000 3.1500 0.6200 0.5862 0.0338
9 30.0000 3.5000 0.6870 0.6536 0.0334
13 30.0000 6.0000 0.8520 0.8198 0.0322
7 30.0000 2.8500 0.5350 0.5053 0.0297
2y 30.0000 11.5000 0.1860 0.1584 0.0276
10 30.0000 4.0000 0.7380 0.7115 0.0265
12 30.0000 5.3000 0.8190 0.7927 0.0263
15 30.0000 7.3000 0.8820 0.8599 0.0221
21 30.0000 9.3000 0.4330 0.4121 0.0209
11 30.0000 4.6000 0.7770 0.7574 0.0196
6 30.0000 2.6000 0.4300 0.4195 0.0105
25 30.0000 12.7000 0.1330 0.1238 0.0092
5 30.0000 2.14000 0.3400 0.3406 -0.0006
30 30.0000 20.0000 0.0250 0.0303 -0.0053
26 30.0000 14.0000 0.0900 0.0964 -0.0064
29 30.0000 18.5000 0.0290 0.0405 -0.0115
16 30.0000 7.7500 0.8520 0.8644 ~0.0124
y 30.0000 2.2500 0.2650 0.2779 -0.0129
28 30,0000 17.0000 0.0400 0.0541 -0.0141
27 30.0000 15.5000 0.0540 0.0723 -0.0183
20 30.0000 8.9000 0.5270 0.5524 -0.0254
3 30.0000 2.1000 0.1700 0.2152 -0.0452
17 30.0000 8.0000 0.7760 0.8445 -0.0685
19 30.0000 8.5500 0.6210 0.6911 -0.0701
2 30.0000 1.9500 0.0750 0.1558 -0.0808
1 30.0000 1.8000 0.0150 0.1035 -0.0885
18 30.0000 8.2500 0.6990 0.7922 -0.0932

YL
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*

* ONE-D IMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
* NON-LINEAR LEAST-SQUARES ANALYSIS

*
*

STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM ADSORPTION
ZERO-ORDER PRODUCTION AND FIRST-ORDER DECAY FOR UNIFORM SOLUTE LOAD

SOLUTION FOR RES!DENT CONCENTRATIONS

FIT TO EX.5A (UNITS: CENTIMETERS, DAYS, MICROGRAMS)

*

*

*

* EX.5B: HYPOTHETICAL REGIONAL TRANSPORT PROBLEM
+

*

#*

W36 3 H I B A S I B I B W AR R TR R NN AR NN RN

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE

<V>. . ..., 10.0000

DISP...... 1.0000

R.o..o.o..u 1.0000

SOLOAD.... 20000.0000

RX1....... 0.0

RX0....... 0.0

SDLN . 1.0000

Cl........ 0.0

Co........ 1000.0000

I TERATION S$SQ <V>, ..
0 212138.759151 10.00000
1 41671.379895 18.41775
2 5685.699634 27.95026
3 290.163378 36.19773
4 14.092663 35.68894
5 10.146888 32.36309
6 9.219075 27.73219
7 0.623445 25.04830
8 0.002403 25.00682
9 0.002053 24.,99640
10 0.002045 25.00137
11 0.002045 25.00148

DISP..
1.00000
0.18538
0.47473
0.71330
1.91076
3.55284
6.60219
9.65937
10.01930
10.03234
10.02680
10.02672

FEEsEPONMEEES

SDLN. .

.00000
.99829
. 12868
.29284
.39359
. 40809
. 40006
37347
.37003
.36991
.36996
. 36996

P = Y

»*
*
*
#
#*
*
*
*
L
*
#*
*

SL



CORRELATION MATRIX

1 2 3 4
1 1.0000
2 =-0.9193 1.0000
3 -0.2474 -0.0124 1.0000
) 0.6063 -0.3364 -0.8575 1.0000

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.99999992

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

VARIABLE NAME

T-VALUE
1400.87

522.54
5739.96
3981.22

FITTED
68.1516
15.2561
2.8408
0.8653
0.3310
0.0800
0.0263
0.0
0.0
0.0
94.9317
L41.8875
14.9128
6.8512
3.6538
1.3846
0.6486
0.2016

VALUE S.E.COEFF.

1 <>, .. 25.00148 0.01785
2 DISP. . 10.02672 0.01919
3 R..... 4.99668 0.00087
4 SDOLN. . 1.36996 0.00034

----------------------- ORDERED BY COMPUTER INPUT

CONCENTRATION

NO DISTANCE TIME 0BS

1 10.0000 1.0000 68.1400

2 25.0000 1.00060 15.2600

3 50.0000 1.0000 2.8400

4 75.0000 1.0000 0.8700

9 100.0000 1.0000 0.3500

6 150.0000 1.0000 0.0900

1 200.0000 1.0000 0.0300

8 300.0000 1.0000 0.0100

9 400.0000 1.0000 0.0

10 500.0000 1.0000 0.0

" 10.0000 5.0000 94,9400

12 25.0000 5.0000 41.8900

13 50.0000 5.0000 14.9100

14 75.0000 5.0000 6.8500

15 100.0000 5.0000 3.6700

16 150.0000 5.0000 1.3900

17 200.0000 5.0000 0.6500

18 300.0000 5.0000 0.2100

19 400.0000 5.0000 0.0900

0.0841

95% CONFIDENCE LIMITS

LOWER UPPER

24,96480 25.03817
9.98727 10.06616
4.99489 4.99847
1.36925 1.37067
RESI-
DUAL

~0.0116
0.0039

-0.0008

.0025
.0028
.0012
L0162
.0054
L0014
.0084
.0059

COCOCCOOCOOOO0OC0O0Q
o
<
o]
w

9L



20 500.0000 5.0000 0.0400 0.0410 -0.0010

21 10.0000 10.0000 79.3800 79.3887 -0.0087
22 25.0000 10.0000 45.4900 45,4854 0.0046
23 50.0000 10.0000 20.9400 20.9485 -0.0085
24 75.0000 10.0000 11.3400 11.3201 0.0199
25 100.0000 10.0000 6.8600 6.8567 0.0033
26 150.0000 10.0000 3.0700 3.0740 -0.0040
27 200.0000 10.0000 1.6300 1.6167 0.0133
28 300.0000 10.0000 0.6200 0.6138 0.0062
29 400.0000 10.0000 0.2900 0.2919 -0.0019
30 500.0000 10.0000 0.1600 0.1590 0.0010

--------------------------- ORDERED BY RES|DUAL=====m=mmmemmomemmcmmmmemee

CONCENTRAT ION RES |~
NO DISTANCE TIME 0BS FITTED DUAL
24 75.0000 10.0000 11,3400 11,3201 0.0199
5 100.0000 1.0000 0.3500 0.3310 0.0190
15 100.00060 5.0000 3.6700 3.6538 0.0162
27 200.0000 10.0000 1.6300 1.6167 0.0133
8 300.0000 1.0000 0.0100 0.0 0.0100
6 150.0000 1.0000 0.0900 0.0800 0.0100
18 300.0000 5.0000 0.2100 0.2016 0.0084
11 10.0000 5.0000 94,9400 94.9317 0.0083
28 300.0000 10.0000 0.6200 0.6138 0.0062
19 400.0000 5.0000 0.0900 0.0841 0.0059
16 150.0000 5.0000 1.3900 1.3846 0.0054
4 75.0000 1.0000 0.8700 0.8653 0.0047
22 25.0000 10.0000 45.4900 45. 4854 0.0046
2 25.0000 1.0000 15.2600 15.2561 0.0039
7 200.0000 1.0000 0.0300 0.0263 0.0037
25 100.0000 10.0000 6.8600 6.8567 0.0033
12 25.0000 5.0000 41.8900 41.8875 0.0025
17 200.0000 5.0000 0.6500 0.6486 0.0014
30 500.,0000 10.0000 0.1600 0.1590 0.0010
9 400.0000 1.0000 0.0 0.0 0.0
10 500.0000 1,0000 0.0 0.0 0.0
3 50.0000 1.0000 2.8400 2.8408 -0.0008
20 500.0000 5.0000 0.0400 0.0410 ~0.0010
14 75.0000 5.0000 6.8500 6.8512 -0.0012
29 400.0000 10.0000 0.2900 0.2919 -0.0019
13 50.0000 5.0000 14.9100 14,9128 -0.0028
26 150.0000 10.0000 3.0700 3.0740 -0.0040
23 50.0000 10.0000 20.9400 20.9485 -0.0085
21 10.0000 10.0000 79.3800 79.3887 -0.0087
1 10.0000 1.0000 68.1400 68.1516 -0.0116

LL
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ONE-DIMENSIONAL CONVECTION-DISPERSION EQ. SOLUTION
NON-L INEAR LEAST-SQUARES ANALYSIS

STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM ADSORPTION
ZERO-ORDER PRODUCTION AND FIRST-ORDER DECAY FOR UNiFORM PULSE

REDUCED CONCENTRATION DATA

EX.6A: FIELD-SCALE BROMIDE MOVEMENT (JURY LT AL.,1982)
(UNITS: MILIMETERS, DAYS, ARBITRARY MASS--REDUCED C)

L ]
*
*
*
»
*
# SOLUTION FOR RESIDENT CONCENTRATIONS
*
*
*
*
#*
*

prgrgrgaprgrgrgrgrgaTEa R PR LS RS DR L S R L R S LS R L LR L R R R Sk L R Ll L R R R D L

INITIAL VALUES OF COEFFICIENTS

NAME INITIAL VALUE

<V>¥ L., 25.0000

DISP...... 100. 00060

Rov.ovann.n 1.0000

PULSE . 1.6900

RX1..... 0.0

RX0....... 0.0

SDLN...... 1.0000

Clo....... 0.0

COo........ 1.0000

ITERATION $SQ <y>#*_,
0 0.0601957 25.00000
1 0.001062 27.41737
2 0.000620 25.72053
3 0.000545 28.47699
L 0.0005138 29.69033
5 0.000518 30.44372
6 0.000518 30. 44455
7 0.000518 30.45577
8 0.000518 30.45479
9 0.000518 30.45601
10 0.000518 30.45886
1M 0.000518 30.46018
12 0.000518 30.46087
13 0.000518 30.u46136
14 0.000518 30.46136

DISP..
100.00000
38.93184
77.91321
11.22351
9.38482
0.38794
0.38133
0.86023
0.98181
0.97338
1.00424
0.96600
0.99540
0.98188
0.98188

OO0 O0OOCOCO0OOOOOOO0O =

INPUT

* % %k %k *k k ¥k ¥k ¥k ¥k %k

8L



CORRELATION MATRIX

1 2 3
1 1.0000
2 -0.9956 1.0000
3 0.9954 -0.9977 1.0000

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=0.98518064

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

95% CONF IDENCE LIMITS

VARIABLE NAME VALUE S.E.COEFF. T-VALUE LOWER UPPER
1 <V>¥* 30.46136 21.01538 1.45 -19.22989 80.15261
2 DISP.. 0.98188 227.53307 0.00 ~-537.02429 538.98805
3 SDLN. . 0.79976 0.94273 0.85 -1.42936 3.02887
----------------------- ORDERED BY COMPUTER INPUT===--c-wwmmmccc e nc e
CONCENTRATION RESi-
NO DISTANCE TIME 0oBS FITTED DUAL
1 300.0000 5.0000 0.0620 0.0676 -0.0056
2 300.0000 10.0000 0.0760 0.0812 -0.0052
3 300.0000 15.0000 0.0590 0.0592 -0.0002
L 300.0000 20.0000 0.0380 0.0400 -0.0020
5 300.0000 25.0000 0.0140 0.0268 -0.0128
6 300.0000 30.0000 0.0070 0.0183 -0.0113
7 300.0000 35.0000 0.0040 0.0127 -0.0087
8 300.0000 40.0000 0.0030 0.0090 -0.0060
9 300.0000 45.0000 0.0010 0.0065 -0.0055
10 300.0000 50.0000 0.0 0.0047 -0.0047

6L



--------------------------- ORDERED BY RESIDUAL=========eemmcemmcoc——cccea-

CONCENTRATION RESI1-
NO D1STANCE TIME 0BS FITTED DUAL
3 300.0000 15.0000 0.0590 0.0592 ~0.0002
4 300.0000 20.0000 0.0380 0.0400 -0.0020
0 300.0000 50.0000 0.0 0.0047 -0.0047
2 300.0000 10.0000 0.0760 0.0812 ~0.0052
9 300.0000 45.0000 0.0010 0.0065 -0.0055
1 300.0000 5.0000 0.0620 0.0676 ~0.0056
8 300.0000 40.0000 0.0030 0.0090 -0.0060
7 300.0000 35.0000 0.0040 0.0127 -0.0087
6 300.0000 30.0000 0.0070 0.0183 ~0.0113
5 300.0000 25.0000 0.0140 0.0268 -0.0128

08



14.  APPENDIX E.
Listing of program CXTFIT for the analysis

of transport parameters from measured
resident or flux concentration data

81
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QOO0 O00

[¢X 2]

OO0

o0 00 OO0

e HE DT 33 H HHIE I HE I 0 30 3006 3030 0 IE 6163 I IS I 36 e W

# *
# CXTF{T: NON-LINEAR LEAST-SQUARES ANALYSIS OF C(X,T) DATA *
» FOR ONE-DIMENSIONAL DETERMINISTIC OR STOCHASTIC SOLUTE *
* TRANSPORT WITH DETECTION IN RESIDENT OR FLUX MODES *
* *
* *

FEAE I NI 3 3636 b6 S50 U A B H I I T 0 A 6631

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION C(90),F(90),R(90),DELZ(90,7),B(14),E(7),TH(14),P(T),
1PHI(7),Q(7),LSORT(90), TB(14},A(7,7),BI(14), TITLE(20),D(7,7)
COMMON/MODAT1/X{90),T(90), INDEX(7), NOB, NREDU, NVAR
COMMON/MODAT2/C 1, C0O,DM1, XL, DM2, DM3, DMis, DM5 , DM6 , DM7, DM8, DM9, DM10,

1DM11,DM12, MODE, MODT
DATA STOPCR/0.0005/
DATA MAXTRY/50/

----- READ NUMBER OF CASES =~-=--
READ(5,1006) NC
DO 150 NCASE=1,NC

----- READ INPUT PARAMETERS ====-
READ(5,1006) MODE, NDATA, NREDU,MIT,NOB, NSKIP,NPRNT
IF(NSKIP.NE.O) GO TO 2
WRITE(6,1000)

IF(MIT.NE.O) WRITE(6,1035)
WRITE(6,1036)

M=(MODE-1)/2

1F({M.EQ.0) WRITE(6,1021)
IF(M.EQ. 1) WRITE(6,1022)
F(M.EQ.2) WRITE(6,1023)
F(M.EQ.3) WRITE(6,1039)
=MODE-2#M

F(N.EQ.1) WRITE(6,1024)
F(N.EQ.2) WRITE(6,1025)
F(NREDU.EQ.1) WRITE(6,1037)
F{NREDU.EQ.2) WRITE(6,1040)
WRITE(6,1036)

|
I
N
|
i
|
|

2 NVAR=6

| F(MODE.GE.5) NVAR=7
NUT=NVAR+1
NU2=2#*NVAR

DO 4 =1,2
READ(5,1001) TITLE

4 1F(NSKIP.EQ.0) WRITE(6,1002) TITLE

IF{NSKIP.EQ.0) WRITE(6,1003)

----- READ COEFFICIENTS NAMES --~--
READ(5,1004) (BiI(1),!=1,NU2)

----- READ INITIAL ESTIMATES -=--~
READ(5,1005) (B(1), i=NU1,NU2)

----- READ INDICES =----

READ(5,1006) ( INDEX(1),I=1,NVAR)

IF{NSKIP.NE.C) GO TO 8

WRITE(6,1007)

DO 6 |=1,NVAR

J=2*%1-1
6 WRITE(6,1008) Bi(J),BI(J+1),B(|+NVAR)
8 CONTINUE



----- READ INITIAL AND INLET CONCENTRATIONS --=---
READ(5,1005) CI,C0

IF(NSKIP.EQ.0) WRITE({6,1026) CI,CO

I F(NDATA.NE.1) GO TO 11

----- READ AND WRITE EXPERIMENTAL DATA ~-=-=--=
XL=0.0

DO 10 I=1,NOB

READ(5,1005) C(1),X{(1),T(1)
XL=DMAX1(XL,%(1))

| F(NREDU.EQ.2) INDEX(1)=0
IF{NSKIP.NE.O) GO TO 150
IF(MIT.EQ.0) GO TO 18
IF(NPRNT.NE.1) GO TO 15
WRITE{6,1009)

DO 14 I=1,NOB

WRITE(6,1010) I,C(1),X{(1),T(1)

----- CHECK FOR INPUT ERROR==«=-

DO 17 1=1,NVAR
(B( I+NVAR).EQ.0.0).AND.(I.LE.3)) GO TO 129

(B( I +NVAR).EQ.0.0).AND. ( INDEX(1)}.EQ.7)) GO TO 130
(t.EQ.4).0OR.(MODE.GE.5)) GO TO 17

INDEX(1).EQ.1) NFC=NFCH+1

B( I+NVAR).NE.0.0) NZC=NZC+1

TINUE

MODE.GE.5) GO TO 18

NZC.LE.NFC) GO TO 120

----- REARRANGE VAR!ABLE ARRAYS -----

DO 20 1=NU1,NU2

TB(1)=B(1)

1 F( INDEX( | -NVAR).EQ.0) GO TO 20
NP=NP+1

K=2*NP-1

J=2#*( | =-NVAR) -1

BI(K)=BI(J)

BI(K+1)=BI{J+1)

NI1T=0

NP2=2%*NP

CALL MODEL(TH,F)

1F (MIT.EQ.0) GO TO 140
§$5Q=0.

DO 32 I1=1,NOB

R(1)}=C(1})=F(])

$SQ=SSQ+R( 1 )*R( )

WRITE(6,1011) (BI(J),BI(J+1),J=1,NP2,2)
WRITE(6,1012) NIT,SSQ, (B(1),1=1,NP)



84

34

36

38

40
42

Yy
50

52

54

56
58

62

64
66

68

----- BEGIN ITERATION ~----
NIT=NIT+1

NTRIAL=0

GA=0. 1*GA

DO 38 J=1,NP

TEMP=TH(J)
TH(J)=1.01#TH(J)

Q(J)=0.

CALL MODEL(TH,DELZ{1,J))
DO 36 I=1,NOB
DELZ(1,J)=DELZ(1,J)=F(})
Q(J)=Q(J)+DELZ( 1, J)*R( 1)
Q{J)=100.*Q(J)/TH(J)

mme——— Q=XT#R (STEEPEST DESCENT) --~

TH(J )=TEMP

DO 4y 1=1,NP

DO 42 J=1,1

SUM=0.

DO 40 K=1,NOB
SUM=SUM+DELZ (K, | ) ¥DELZ(
D(1,J)=10000.*SUM/(TH(!
D(J, 1)=D(1,J)
E(1)=DSQRT(D(1,1))
IF(E(1).EQ.0.) E(1)=1.E-30
DO 52 1=1,NP

DO 52 J=1,NP
A(1,J)=D(1,J)/(E(1)*E(J))

K,J)
J*TH(J))

----- A 1S THE SCALED MOMENT MATRIX

DO 54 I=1,NP
P(1)=Q{1)/E())
PHI(1)=P(1)

A(1, 1)=A(1, | )+GA
CALL MATINV(A,NP,P)

----- P/E IS THE CORRECTION VECTOR
STEP=1.0

DO 58 1=1,NP
TB(1)=P( 1 )*STEP/E{ 1 )+TH( 1)

DO 62 1=1,NP

IF(TH( | )*TB(1))66,66,62

CONT INUE

SUMB=0.0

CALL MODEL{TB,F)

DO 64 1=1,NOB

R(1)=C(1)-F(!)
SUMB=SUMB+R({ | )*R( 1)
SUM1=0.0

SUM2=0.0

SUM3=0.0

DO 68 1=1,NP

SUMI=SUMI+P( 1 )*#PHI( 1)
SUM2=SUM2+P( | )*P( |}
SUM3=SUM3+PHI( t )¥PHI( 1)
ARG=SUM1/DSQRT ( SUM2*SUM3 )

ARG1=0.0

IF(NP.GT.1} ARG1=DSQRT(1.-ARG*ARG)
ANGLE=57.29578 ¥DATAN2 ( ARG1, ARG)
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T4
76

78

80
82

86
9y

95

96

98

100
102
104

106

85

DO 72 1=1,NP
TF(TH(1)*TB(1))74,74,72
CONT I NUE

NTRIAL=NTRIAL+1
IF{NTRIAL.GT.MAXTRY) GO TO 95
IF(SUMB/SSQ=1.0) 80,80, 74
| F(ANGLE-30.0)76,76,78
STEP=0.5%STEP

GO TO 56

GA=10.*GA

GO TO 50

----- PRINT COEFFICIENTS AFTER EACH |TERATION =====
CONT INUE

DO 82 I=1,NP

TH(1)=TB(1)

WRITE (6,1012) NIT,SUMB, (TH(1),1=1,NP)

DO 86 I=1,NP

IF(DABS(P( | )*STEP/E(1))/(1.0D-20+DABS(TH( 1)) )-STOPCR) 86,86,94
CONT INUE

GO TO 96

$SQ=SUMB

IF(NIT.LT.MIT) GO TO 34

IF(NIT.EQ.MIT) WRITE(6,1034) MIT

GO TO 96

WRITE(6,1038) MAXTRY

----- END OF ITERATION LOOP -----
CONTINUE
CALL MATINV(D,NP,P)

----- WRITE CORRELATION MATRIX --===
DO 98 I=1,NP
E(1)=DSQRT(D( I, !)
1F(E(1).EQ.0.) E{
IF(NP.EQ.1) GO TO
WRITE(6,1013) (1,
DO 102 1=1,NP

00 100 J=1, |
A(J,1)=D(J, 1)/(E
WRITE(6,1014) |,
SUMC=0.0
SUMF=0.0
SUMC2=0.0
SUMF2=0.0
SUMCF=0.0

DO 106 1=1,NOB
SUMC=SUMC+C( 1)
SUMF=SUMF+F( i )
SUMC2=SUMC2+C( | )*C( 1)
SUMF2=SUMF2+F( | )*F( 1)

SUMCF=SUMCF+C( | )*F (1)

RSQ=( SUMCF-SUMC¥*SUMF /NOB ) ##2/ ( ( SUMC2=-SUMC*SUMC/NOB ) #{ SUMF2~SUMF*
1SUMF/NOB) )

WRITE(6,1041) RSQ
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----- CALCULATE 95% CONFIDENCE INTERVAL ==w=~-
Z=1./FLOAT(NOB-NP)

SDEV=DSQRT(Z*SUMB )}
TVAR=1,96+Z%(2.3779+Z*(2.7135+Z%(3.187936+2.466666%*Z2**2)))
WRITE(6,1015)

DO 108 I1=1,NP

SECOEF=E( ! )*SDEV

TVALUE=TH( | ) /SECOEF

TSEC=TVAR*SECOEF

TMCOE=TH( 1 )-TSEC

TPCOE=TH( | )+TSEC

J=2%1-1

IF(NP.EQ. 1)
IWRITE(6,1043) 1,BI(J),BI(J+1),TH(I),SECOEF, TMCOE, TPCOE
IF(NP.GT. 1)
TWRITE(6,1016) ,BI(J),B1(J+1),TH(1),SECOEF, TVALUE, TMCOE, TPCOE

108 CONTINUE

110

118
120

125
129
130
140

145
150

----- PREPARE FINAL OUTPUT =-----
LSORT(1}=1

DO 116 J=2,NOB

TEMP=R(J)

K=J-1

DO 111 L=1,K

LL=LSORT(L)

IF(TEMP-R(LL)) 112,112,111

CONT INUE

LSORT{J)=J

GO TO 116

KK=J

KK=KK-1

LSORT( KK+1)=LSORT(KK)

FF(KK=L) 115,115,113

LSORT(L)=J

CONT I NUE

WRITE(6,1017)

DO 117 1=1,NOB

WRITE(6,1018) 1,X{1),T(1),C(1),F(1),R(1)
WRITE(6,1019)

DO 118 1=1,NOB

J=LSORT{NOB+1-1)

WRITE(6,1018) J,X{(J),T(J),C(J),F(J),R{J)
GO TO 150

WRITE(6, 1028)

DO 125 I=1,NVAR

J=2%1-1

IF(1.EQ.4) GO TO 125

FF{( INDEX{1).EQ.1).AND. (B{!+6).NE.0.0)) WRITE(6,1029)BI(J),BI(J+1)
CONT INUE

GO T0 150

WRITE(6,1032)

GO TO 150

WRITE(6,1031)

GO T0 150

WRITE(6,1030)

DO 145 t=1,NOB
WRITE(6,1033)1,X(1),T(1),F(1)
CONT INUE

----- END OF PROBLEM ----=
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999 FORMAT(2F10.4,15)

1000 FORMAT(1H1, 10X, 82( TH*) /11X, 1H*, 80X, TH#/11X, TH#*, 10X, ' ONE-D IMENS | ONA
1L CONVECTION-DISPERSION EQ. SOLUTION', 20X, 1H#*)

1001 FORMAT(20Al4)

1002 FORMAT( 11X, TH*, 20AL4, 1H*)

1003 FORMAT( 11X, TH*, 80X, TH*/11X,82( 1H*))

1004 FORMAT(7(uX,A4,A2})

1005 FORMAT(7F10.0)

1006 FORMAT(7110)

1007 FORMAT(//11X,'"INITIAL VALUES OF COEFFICIENTS'/11X,30(1H=)/12X,
1'NAME', 11X, " INITIAL VALUE')

1008 FORMAT(11X,A4, A2,4(1H.),F12.4)

1009 FORMAT(//11X, 'OBSERVED DATA',/11X,13(1H=)/11X,"'0BS. NO.',5X, 'CONCE
INTRATION',6X, 'DISTANCE' ,9X, 'TIME")

1010 FORMAT(11X,15,6X,F12.4,4X, F12.4,4X,F12.4)

1011 FORMAT(//11X, ' ITERATION',6X, 'SSQ',4X,5(7X, A4, A2))

1012 FORMAT(11X, 15,3X,F13.5,2X,5(F13.5))

1013 FORMAT(///,11X, 'CORRELATION MATRIX

1014 FORMAT(11X,13,10(2X,F7.4,2X))

1015 FORMAT(1H1, 10X, 'NON~LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS'
1/11X,48(1H=)//72X, '95% CONF | DENCE LIMITS’/11X,'VARIABLE"uX,'NAME'
2,8X, "VALUE',8X, 'S.E.COEFF."',3X, 'T-VALUE',5X, 'LOWER', 10X, ' UPPER")

1016 FORMAT(]?X,I2,6X,AM,A2,1X,F13.5,3X,F13.5,2X,F8.2,1X,F13.5,
12%,F13.5

1017 FORMAT(//11X,23(1H-), 'ORDERED BY COMPUTER INPUT',24(1H-)/
150X, 'CONCENTRATION', 12X, 'RESI-' /11X, 'NO',u4X, '"DISTANCE' ,9X, 'TIME',
210X, '0BS',9X%,'FITTED',9X, 'DUAL")

1018 FORMAT(10X,12,1X,F12.4,4(2X,F12.4))

1019 FORMAT(//11X,27(1H-), 'ORDERED BY RESIDUAL',28(1H-)/
150X, ' CONCENTRATION' , 12X, 'RESI-'/11X, 'NO',u4X, 'DISTANCE',9X, 'TIME',
210X, 'OBS',9X, 'FITTED',9X, 'DUAL")

1020 FORMAT(///11X,"END OF PROBLEM'/11X,14(1H=))

1021 FORMAT( 11X, 1H%, 10X, '"DETERMINISTIC LINEAR EQUILIBRIUM ADSORPTION FO
1R PULSE INJECTION',7X, TH*/11X, 1H*, 10X, 'WITH FIRST- AND ZERO-ORDER
2PRODUCTION AND DECAY', 23X, 1H*)

1022 FORMAT{ 11X, 1H* 10X, 'DETERMINISTIC TWO-SITE/TWO-REGION NONEQUILIBR!
1UM MODEL FOR ",8X, TH*/11X, 1H¥*, 10X, ' PULSE-TYPE INJECTION WITH NO
2 PRODUCTION OR DECAY',22X, 1H*)

1023 FORMAT( 11X, 1H*, 10X, ' STOCHAST IC TRANSPORT MODEL WITH EQUILIBRIUM AD
1SORPTION', 16X, tH*/ 11X, 1H*, 10X, ' ZERO-ORDER PRODUCTION AND FIRST-ORD
2ER DECAY FOR UNIFORM PULSE INPUT',3X, 1H*)

1024 FORMAT( 11X, 1H*,10X, 'SOLUTION FOR RESIDENT CONCENTRATIONS', 34X, 1H*)

1025 FORMAT( 11X, TH*, 10X, 'SOLUTION FOR FLUX CONCENTRATIONS', 38X, 1H*)

1026 FORMAT{11X,'CI',8(1H.),F12.4/11X,"'C0",8(1H.),F12.4)

1028 FORMAT(//11X,' INPUT ERROR-- TOO MANY UNKNOWNS! '/11X,'ONE OF THE F
10LLOWING COEFFICIENTS MUST BE FIXED:')

1029 FORMAT(60X,Al,A2)

1030 FORMAT(//11X,9 1H-), '"RESULTS FOR INITIAL COEFFICIENT VALUES',9(1H-
1)/11%, "NO',8X, 'DISTANCE',8X, 'TIME', 7X, "CONCENTRATION')

1031 FORMAT(//11X,' INPUT ERROR: NONZERO IN!TIAL VALUES OF VARIABLE COEF
1FICIENTS MUST BE SPECIFIED!'/11X"FOR REACTION CONSTANTS BE SURE S
21GN OF COEFFICIENT IS CORRECT AS’'/11X,'FITTING PROCEDURE WILL NOT
3CHANGE sucns')

1032 FORMAT{//11X,'INPUT ERROR: V,D AND R MUST BE GREATER THAN ZERO!')

1033 FORMAT(11X,12,3(3X,F12.4))

1034 FORMAT{ /11X, 'CONVERGENCE CRITERIA NOT MET IN',13,' ITERATIONS')

1035 FORMAT( 11X, 1H*, 10X, 'NON-LINEAR LEAST-SQUARES ANALYSIS', 37X, 1H*)

1036 FORMAT(11X, 1H#,80X, 1H*)

1037 FORMAT (11X, 1H*, 10X, 'REDUCED CONCENTRATION DATA',uux,1H*)

1038 FogMAT(/11x,'No FURTHER DECREASE IN SSQ OBTAINED AFTER ',12,' TRIA
1Ls8')

1039 FORMAT( 11X, 1H*, 10X, ' STOCHASTIC TRANSPORT MODEL WITH EQUILIBRIUM AD
1SORPTION', 16X, TH*/11X, 1H*, 10X, ' ZERO-ORDER PRODUCTION AND FIRST-ORD
2ER DECAY FOR UNIFORM SOLUTE LOAD', 3X, 1H¥*)

1040 FORMAT( 11X, 1H*, 10X, 'REDUCED CONCENTRATION AND TIME DATA', 35X, 1H#*)

1041 FORMAT(/11X, 'RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED=',
1F10.8/)

/11X, 18(1H=) /14X, 10(4X, 12,5X))
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1042 FORMAT(1H1,10X, "NON-LINEAR LEAST SQUARES ANALYS!S, FINAL RESULTS'
1/11X‘u8(1H=)//6NX,'95% CONFIDENCE LIMITS' /11X, "VARIABLE', 4X, ' NAME'
2,8X, '"VALUE',8X,'S.E.COEFF."',7X, 'LOWER', 10X, 'UPPER")

1043 FORMAT(14X,12,6X,A4,A2,1X,F13.5,3X,F13,5,1X,F13.5,2X,F13.5)

STOP
END

SUBROUTINE MATINV(A,NP,B)

o000 o

PURPOSE: PERFORM MATRIX INVERSION FOR PARAMETER ESTIMATION

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(7,7),B(14), INDEX(7,2)
Do 2 J=1,7
2 INDEX(J, 1)=0
1=0
4 AMAX=-1.0
DO 10 J=1,NP
IF( INDEX{J,1)) 10,6,10
6 DO 10 K=1,NP
IF( INDEX{K,1)) 10,8,10
8 P=DABS(A(J,K))
IF(P.LE.AMAX) GO TO 10
IR=J
1C=K
AMAX= P
10 CONTINUE
[F(AMAX) 30,30, 14
14 INDEX({IC,1)=IR
IF(IR.EQ.IC) GO TO 18
DO 16 L=1,NP
P=A(IR,L)
A(IR,L)=A(IC,L)
16 A(IC,L)=P
P=B{ IR)
B(IR)=B( IC)
8{1C)=P
F= 141
INDEX(1,2)=1C
18 P=1./A(IC,1C)
A(IC,1C)=1.0
DO 20 L=1,NP
20 A(IC,L)=A{IC,L)*P
B(1C)=B( IC)*P
DO 24 K=1,NP
IF(K.EQ.1C) GO TO 24
P=A(K, IC)
A(K, 1C)=0.0
DO 22 L=1,NP
22 A(K,L)=A(K,L)=A(1C,L)*P
B(K)=B(K)~-B({IC)*P
24 CONTINUE
GO TO 4
26 1C=INDEX(1,2)
IR=INDEX{ IC, 1)
DO 28 K=1,NP
P=A(K, IR)
A(K, IR)=A(K, IC)
28 A(K, IC)=P
1=1-1
30 IF(1) 26,32,26
32 RETURN
END
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SUBROUTINE MODEL(BN,CXT)

PURPOSE: ASSIGN COEFFICIENTS AND ROUTE EXECUTION FOR MODELS

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION BN{14),CXT{(90)

COMMON/MODAT1/X(90),T{90), INDEX(7),NOB, NREDU, NVAR

89

COMMON/MODAT2/C1,C0, SOLOAD, XL, F1,F2,F3, F4,F5,R, VLNM, SDLN,DISP,XJ,

1TJ,MODE, MODT
EXTERNAL CAVG

--=--UPDATE COEFF!{CIENT ARRAY==-=«
K=0

NUT=NVAR+1

NU2=NVAR#2

DO 2 1=NU1,NU2

I F( INDEX( ! -NVAR).EQ.0) GO TO 2
K=K+1

BN( | )=BN(K)

CONT INUE

----- ASSIGN PARAMETERS AND CHANGE FROM REDUCED TO ACTUAL TIMES

V=BN{NU1)
R=BN{ NVAR+3 )

REDT=1.0

I F{NREDU.NE.2) GO TO 8

REDT=XL/V

DO 4 1=1,NOB

T(1)=T( | }*REDT

IF(MODE.LE.6) F3=REDT#BN{NVAR+L)
| F(MODE.GE.5) GO TO 150

I F(MODE.GE.3) GO TO 100

F1=V/R

F2=BN(8)/R

Fu=BN(11)/R

F5=BN(12) /R

~-=-=-SOLVE FOR MODELS 1 AND 2
DO 75 J=1,NOB

CALL MOD12(CXT(J),X(J),T{J))
CONT INUE

GO TO 350

---=-SOLVE FOR MODELS 3 AND 4
Fi=v

F2=V¥*XL/BN(8)
FU=DMINT(BN(11),0.9999D00)*R
F5=BN(12)

DO 125 J=1,NOB

CALL MOD34(CXT(J),X(J),T(J))
CONT INVE

GO TO 350

----SOLVE FOR MODELS 5 THRU 8
Fu=BN(12)/R

F5=BN{13)/R

SDLN=BN{ 144)
VLNM=DLOG(V)~0.5*SDLN*SDLN
DISP=BN(9) .

| F(MODE.GE.7) SOLOAD=BN{11)/CO
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VMINT=DEXP{VLNM=-3, 9#SDLN)

VMAX1=DEXP( VLNM+3, 9#SDLN)
CMIN=DABS(CO~-C!)*1.D-06

MODT=MODE

JF{(MODT.EQ.5).OR. (MODT.EQ.7)) MODE=1
I F{(MODT.EQ.6).0R. (MODT.EQ.8) ) MODE=2
DO 175 J=1,NOB

XJ=X{J)

TJ=T{J)

PL=DMAX1(XJ/DI1SP,1.D-10)
VMIN=DMAX1(VMiNT,DMINT( Q. 14*DLOG( PL}*XJ/Td=.05,0.9%XJ/TJ ) #R)
CALL LIMIT(VMIN, VMAX, VMAX1,CMIN)

CALL ROMB(CAVG,CXT(J),VMIN, VMAX)
VF(MODE.EQ.2) CXT(J)=CXT(J)/V

CONT tNUE

MODE=MODT

CONT 1 NUE

I F(NREDU.EQ.0) GO TO 360

DO 355 (=1,NOB

T(1)=T(1)/REDT

CXT( 1)=(CXT{1)=C1)/(CO-CI)

CONT INUE

RETURN

END

SUBROUT INE MOD12(CXT, X, TIME)
PURPOSE: TO CALCULATE C(X,T) FOR MODE=1

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/MODAT2/C1,CO0O, DM1, XL, VR, DR, TO, RX1R, RXOR, R, DM2, DM3, DMU4, DM5,
1DM6, MODE , MDMY

IF{RXIR.NE.0.0) GO TO 50

------ CALCULATE C(X,T) FOR RX1R=0
DO 20 M=1,2

A=0.0

B=0.0

T=TIME+( 1-M)#T0

1F(T.LE.0.0) GO TO 20
S2=(X-VR*T)/DSQRT( 4. *DR*T)
S6=VR*X/DR
ST=(X+VR*T)/DSQRT{ 4. *DR#*T)
E1=EXF(0.0D00, S2)

E2=EXF(S6,S7)

| F(MODE.EQ.2) GO TO 2
S3=VR*DSQRT(T/(DR*3.141593))
SU={ X-VR*T ) #(VR*T-X)/(4*DR*T)
$5=-0.5%( 1.+VR*X/DR+VR*VR*T/DR)
E3=EXF(S4,0.0000)

GO TO 3

$3=0.0

$5=0.5

£3=0.0

A=0.5%E1+S3H*E3+SH*E2

IF(M.EQ.2) GO TO 30

I F(RXOR.EQ.0.0) GO TO 10

1 F(MODE.EQ.2) GO TO 5
S8=(X-VR*T+DR/VR)/{(2*VR)
S9=DSQRT(T*0.079577/DR)*( X+VR*T+2. #DR/VR)
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$10=T/2.-DR/(2. #*VR*¥VR )} +( X+VR*¥T ) ##2 /{4*DR)

GO TO 7

S8=(X~VR*T)/(2.*VR)

$9=0.0

S10==(X+VR#*T)/(2.*VR)
B=RXOR*( T+S8*E1-SO#E3+S10*E2)
CXT=C|+(CO-CI| )*A+B

CONTiNUE

CXT=CXT=-CO*A

RETURN

------ CALCULATE RX1R.NE.O. CASE
RAT=RXOR/RX1R

DO 70 M=1,2

A=0.0

B=0.0

T=TIME+(1-M)}*TO

1F(T.LE.0.0) GO TO 70
ST=(X+VR*T)/DSQRT( 4. *DR*T)
IF(M.EQ.2) GO TO 55
S1==-RXTIR*T
S2=(X-VR*T)/DSQRT( 4, *DR*T)
S6=VR*X/DR

E1=EXF(0.0000, S2)
E2=EXF{S6,S7)

I F{MODE.EQ.2) GO TO 52
S3=VR*DSQRT(T/(DR*3.141593))
SU=(X~VR*T)*(VR*T-X}/(LU*DR*T)
S$5==0.5%( 1, +VR*X/DR+VR#VR*T/DR)
E3=EXF{S4,0.0D00)

GO TO 53

$3=0.0

§5=0.5

E£3=0.0
A=EXF(S1,0.D00)*(1.-0.5%E1-S3*E3-S5%E2)
CONTINUE

U=DSQRT( VR*VR+4, *RX1R*DR)
S9=(VR-U)*X/(2.*DR)
S10=(X-U*T)/DSQRT (4, *DR*T}
S12=(VR+U)*X/(2.*DR)
S13=(X+U*T)/DSQRT (UL, *DR*T)
IF(MODE.EQ.2) GO TO 57
S8=VR/(VR+U)

S11=VR/(VR-U)
S14=VR*VR/(2.*RX1R*DR)
S15=VR*X/DR-RX1R#*T
S16=S1U*EXF(S15,S7)

GO TO 59

$8=0.5

$11=0.5

$16=0.0
B=S8*EXF(S9,S10)+S11#EXF(S12,513)+S16
IF(M.EQ.2) GO TO 80
CXT=(CI|-RAT)*A+(CO-RAT ) *B+RAT
CONT INUE

CXT=CXT-CO*B

RETURN

END
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SUBROUTINE MOD34(CXT,X,T)
PURPOSE: CALCULATE C(X,T) FOR MODELS 3 AND 4

IMPLICIT REAL¥*8 (A-H,0-Z)
COMMON/MODAT2/C1,CO, DM1, XL, V, P, TO, BETR, OMEGA, R, DM2, DM3,DMu, Z, TT,
TMODE , MDHY

DIMENSION WG(5),XG(5)

DATA XG/.04691008, .23076534, .50000000, 76923466, .95308992/
DATA WG/. 1184634, .2393143, 2844y, . 2393143, . 1184634/
EXTERNAL GCO

TRO=V*#T0O/XL

TR=V*T /XL

Z=X/XL

IF(Z.GT.0.0) GO TO 5

Z=1.D-10

| F(MODE.EQ.3) GO TO 5

CXT=0.0

FF(T.LE.TO) CXT=CO

RETURN

DO 20 M=1,2

A=0.0

TT=TR+( 1-M)*TRO

IF(TT.LE.0.) GO TO 20
AP=DSQRT(1.+.05#*P#Z)
TMAX=DMIN1( 7T, BETR*(Z+40.*(1.+AP)/P))
TMIN=DMAX1(0.0D00, BETR*(Z+40.%(1.-AP)/P))
i F(TMAX.LE. TMIN) GO TO 15

A1=0.0

}F(TMIN.GT.0.) GO TO 10
TMAX2=TMAX*1, D=4

DO 8 1=1,5

TAU=TMIN+( TMAX2=TMIN)*XG( | )
A1=AT+WG( | )*CCO( TAU)

A1=A1#{ TMAX2-TMIN)

TMIN=TMAX2

CONT I NUE

CALL ROMB{CCO, A2, TMIN, TMAX)

A=AT+A2

IF{M.EQ.2) GO TO 30

CXT=CI+(CO-CI )*A

CONT INUE

CXT=CXT-CO*A

RETURN

END
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SUBROUTINE LIMIT(VMIN, VMAX, VMAX1,CMIN)
PURPOSE: TO CALCULATE INTEGRATION LIMITS FOR MODELS 5-8
IMPLICIT REAL*8 (A-H,0-Z)

----- CALCULATE VMIN ~-==-=
[ F{VMIN.GE.VMAX1)RETURN

F=( VMAX1/VMIN)%%0. 1

DO 8 J=1,3

DO 4 1=1,11

CLST=CAVG{ VMIN)

IF{CLST.GT.CMIN/100.) GO TO 6

VMIN=VMIN*F

VMAX=VM | N

RETURN

SLOPE=( CAVG(VMIN#*1, 001) CLST)/(0.0071#VMIN)
I F{SLOPE.GT.0.) GO TO 10

VMIN=VMIN/F

F=F#*%Q, 1

GO TO 20

IF{CLST.LT.CMIN) GO TO 20

Do 12 1=1,5

VMIN=VMIN-CLST/SLOPE

IF(VMIN.LE.0.0)GO TO 15

IF(CLST.LT.CMIN) GO TO 20

CLST=CAVG{VMIN)

SLOPE=( CAVG(VMIN#*1.001)-CLST)/(0.001#VMIN)
IF(SLOPE.LE.0.) GO TO 20

CONT INUE

GO TO 20

VMIN=VMIN+CLST/SLOPE

----- CALCULATE VMAX =v===
F=(VMAX1/VMIN)##0, 1

VMAX=VMAX 1

DO 28 J=1,3

DO 24 1=1,11

CLST=CAVG(VMAX)
IF(CLST.GT.CMiN/100.) GO TO 26
VMAX=VMAX/ F

SLOPE=( CAVG(VMAX*1.01)~CLST)/(0.01#VMAX)
IF(SLOPE.LT.0.) GO TO 30
VMAX=VMAXH* F

F##Q,

RETURN

JF(CLST.LT.CMIN) RETURN

DO 32 1=1,5
VMAX=VMAX-CLST/SLOPE
IF(CLST.LT.CMIN) RETURN
CLST=CAVG(VMAX)

SLOPE={ CAVG(VMAX*1,01)=CLST)/(0.01*VMAX)
I F(SLOPE.EQ.0.) RETURN

CONT INUE

RETURN

END
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SUBROUT INE ROMB( FUNC, AREA, XMIN,6 XMAX)

PURPOSE: PERFORM ROMBERG INTEGRATION ON LOG-TRANSFORMED

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION R(9,9)

AREA=0 .0
FF(XMIN.GE.XMAX)RETURN
LEVEL=9

STOPER=0. 00005

XLN1=DLOG({ XMIN)
XUN2=DLOG ( XMAX )
DX1=XLN2~XLN1

SUM=0, 5#XMIN*FUNC{XMIN)
AREA=SUM*DX1

R(1, 1)=AREA

DX2=DX1/2.

INC=1

DO 20 1=2,LEVEL
XLN=XLN1+DX2

DO 4 M=1, INC

XE=DEXP(XLN)
SUM=SUM+XE*FUNC ( XE )
XLN=XLN+DX1

AREA=SUM*DX2

R(1, { }=AREA

DO 17 J=2, |

K=1+1-J

R{J,K)=(4. #*(J=1)#R(J~1,K+1}=R(J=1,K))/ (4. ¥*(J=1)=1)
IF(R(1,1).GT.0.0) GO TO 18
1F(1.GT.4) RETURN

GO TO 19
ERROR=DABS({ (R( 1,1)-R(i-1,2))/R(1,1))
| F((ERROR.LT.STOPER).AND.((.GT.4)) RETURN
DX1=DX1/2.

DX2=DX2/2.

iNC= INC*2

RETURN

END

FUNCTION CCO(TAU)

PURPOSE: CALCULATE ARGUMENT IN INTEGRAL FOR MODELS 3 AND 4

IMPLICIT REAL*8 (A-H,0-Z)

COMMON/MODAT2/DM1,DM2, DM3, DMU4, DMS, P, DM6, BETR, OMEGA, R, DM7, DM8, DM9,

1Z,T,MODE, MDMY
CC0=0.0

G1=EXF( P*( BETR*Z~TAU)*( TAU-BETR*Z) /(4. *BETR*TAU), 0.D00)

| F(MODE.EQ.4) GO TO 5
G2=DSQRT(P/(BETR*TAU))

G=0.56419*G2*G1-P/ (2. *BETR)*EXF( P*Z,G2/2. %(BETR*Z+TAU) )

GO TO 10
G=(Z/TAU)*DSQRT( P*BETR/(12.566U*TAU) ) *G1
IF(G.LT.1.D-07) RETURN

A=OMEGA*TAU/BETR
B=OMEGA*(T-TAU)/(R-BETR)

CCO=G*GOLD(A, B)

RETURN

END



Qoo O

oo O

WN =

95

FUNCTION CAVG(V)
PURPOSE: CALCULATE ARGUMENT IN INTEGRAL FOR MODELS 5-8

IMPLICIT REAL*8(A-H,0-Z)

COMMON/MODAT2/C 1, CO, SOLOAD, XL, VR, DR, TO, RX1R, RXOR, R, VLNM, SDLN,DISP,

1X, T,M0DE, MODT

VLN=DLOG(V)

VR=V/R

DR=VR*DISP

| F(MODT.GE.7) TO=SOLOAD/V

CALL MOD12(C,X,T)
ARG=DMIN1(1.002, (VLN-VLNM)*(VLN-VLNM)/(2.*SOLN*SDLN})
PROB=DEXP(-ARG)/{2.50663*SDLN*V)
IF(C.LT.1.D-70)C=0.D00

I F(MODE. EQ. 1) CAVG=PROB*C

I F(MODE.EQ.2) CAVG=PROB*C*Y
RETURN

END

FUNCTION EXF(A,B)
PURPOSE: TO CALCULATE EXP(A) ERFC(B)

IMPLICIT REAL*8(A-H,0-7)

EXF=0.D00

| F{(DABS(A).GT.100.).AND.(B.LE.O.)) RETURN

C=A-B#B

IF((DABS(C).GT.100.).AND.(B.GE.0.)) RETURN
IF{C.LT.-100.) GO TO 3

X=DABS(B)

IF(X.GT.3.0) GO TO 1

T=1./(1.+.3275911#X)

E:T;é.35u8296-T*(.28&&967-T*(1.u21u1u-T*(1.U53152-1.061h05*T))))
0

Y=,56U1896/(X+.5/(X+1./(X+1.5/(X+2./(X+2.5/X+1.)))))
EXF=Y#DEXP(C)

JF(B.LT.0.0) EXF=2.*DEXP(A)-EXF

RETURN

END
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FUNCTION GOLD(X,Y)
PURPOSE: TO CALCULATE GOLDSTEIN'S J-FUNCTION J(X,Y)

IMPLLICIT REAL*8(A-H,0~Z)
GOLD=0.0

BF=0.0

E=2.*DSQRT({DMAX1(0. D0, X*Y))

Z=X+Y-E

IF(Z.GT.17.) GO T0 8

IT(E.NC.O.) GO TO 2

GOLD=DEXP(-X)

RETURN

A=DMAX1({X,Y)

B=DMINT(X,Y)

NT=11.+42.%B+0. 3*A

IF(NT.GT.25) GO TO 6

=0

TF(X.LT.Y) =1

GXY=1,+I%(B=1.)

GXYO0=GXY

GX=1.0

CY=GXY

GZ=1.0

DO 4 K=1,NT

GX=GX*A/K

GY=GY*B/(K+1)

GZ=GZ+GX

CXY=GXY+GY¥*GZ

1 F{(GXY-GXY0)/GXY.LT.1.D-08) GO TO 5

GXYO=GXY

GOLD=GXY*EXF(=-X-Y,0.0D00)

GO TO 8

DA=DSQRT({A)

DB=DSQRT(B)

P=3.75/F

BO={(.3989123+P*(.01328592+P*(,00225319-P*( ,00157565~P*(.00916281~P
1#(.02057706~P*( . 02635537-P*(.01647633-.00392377%P))))))))/DSQRT(E)
BF=BO*EXF(-Z,0.0D00)

P=1./(1.+.3275911%(DA-DB))
ERF:P*§.25h8296-P*(.28&“967-P*(1.421Q1Q-P*(1.u53152-P*1.061u05))))
P=0.25/E

CO=1.-1,772454%( DA-DB ) *ERF

C1=0.5-Z*C0

C2=0.75-Z*C1

C3=1.875-Z*%C2

Cl=6.5625-Z*C3
SUM=_.1994711%*(A=B)#P#(CO+1.5%P*(C1+1.66666T*P*(C2+1. 75*P*(C3+P*(ChL
1#%(1.8~3,3%P*Z)+97.45313%P)))))
GOLD=0.5*BF+(.3535534%(DA+DB)*ERF+SUM)*BF/( BO*DSQRT(E))
FF(X.LT.Y) GOLD=1.+BF~-GOLD

RETURN

END



Virginia’s Agricultural Experiment Stations

1—Blacksburg

Virginia Tech
2—Steeles Tavern

Shenandoah Valley Research Station
3—O0range

Piedmont Research Station

4—Winchester
Winchester Fruit Research Laboratory
5—Middleburg
Virginia Forage Research Station
6—Warsaw
Eastern Virginia Research Station
7—Suffolk
Tidewater Research and Continuing Education Center
8—Blackstone
Southern Piedmont Research and Continuing Education Center
9—Critz
Reynolds Homestead Research Center:
10—Glade Spring
Southwest Virginia Research Station
11—Hampton
Seafood Processing Research and Extension Unit

~
Winchester
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